Data Mining: Practical Machine Learning Tools and Techniques, 2/e
暫譯: 資料探勘:實用機器學習工具與技術(第二版)
Ian H. Witten, Eibe Frank
- 出版商: Morgan Kaufmann
- 出版日期: 2005-06-22
- 售價: $1,176
- 語言: 英文
- 頁數: 560
- 裝訂: Paperback
- ISBN: 0120884070
- ISBN-13: 9780120884070
-
相關分類:
Machine Learning、Data-mining
無法訂購
買這商品的人也買了...
-
$970Introduction to Algorithms, 2/e
-
$590$466 -
$1,007C How to Program, 4/e
-
$820$804 -
$780$616 -
$990$782 -
$1,176Computer Organization and Design: The Hardware/Software Interface, 3/e(IE) (美國版ISBN:1558606041)
-
$780$616 -
$890$703 -
$650$507 -
$1,078Operating System Principles, 7/e(IE) (美國版ISBN:0471694665-Operating System Concepts, 7/e) (平裝)
-
$880$748 -
$680$646 -
$880$695 -
$880$695 -
$390$308 -
$890$757 -
$780$741 -
$780$663 -
$650$507 -
$550$435 -
$980$774 -
$680$537 -
$720$569 -
$600$480
商品描述
Description
As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights for the new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; plus much more.
Table of Contents
Preface
1. What?s it all about?
1.1 Data mining and machine learning 1.2 Simple examples: the weather problem and others 1.3 Fielded applications 1.4 Machine learning and statistics 1.5 Generalization as search 1.6 Data mining and ethics 1.7 Further reading
2. Input: Concepts, instances, attributes
2.1 What?s a concept? 2.2 What?s in an example? 2.3 What?s in an attribute? 2.4 Preparing the input 2.5 Further reading
3. Output: Knowledge representation
3.1 Decision tables 3.2 Decision trees 3.3 Classification rules 3.4 Association rules 3.5 Rules with exceptions 3.6 Rules involving relations 3.7 Trees for numeric prediction 3.8 Instance-based representation 3.9 Clusters 3.10 Further reading
4. Algorithms: The basic methods
4.1 Inferring rudimentary rules 4.2 Statistical modeling 4.3 Divide-and-conquer: constructing decision trees 4.4 Covering algorithms: constructing rules 4.5 Mining association rules 4.6 Linear models 4.7 Instance-based learning 4.8 Clustering 4.9 Further reading
5. Credibility: Evaluating what?s been learned
5.1 Training and testing 5.2 Predicting performance 5.3 Cross-validation 5.4 Other estimates 5.5 Comparing data mining schemes 5.6 Predicting probabilities 5.7 Counting the cost 5.8 Evaluating numeric prediction 5.9 The minimum description length principle 5.10 Applying MDL to clustering 5.11 Further reading
6. Implementations: Real machine learning schemes
6.1 Decision trees 6.2 Classification rules 6.3 Extending linear models 6.4 Instance-based learning 6.5 Numeric prediction 6.6 Clustering 6.7 Bayesian networks
7. Transformations: Engineering the input and output
7.1 Attribute selection 7.2 Discretizing numeric attributes 7.3 Some useful transformations 7.4 Automatic data cleansing 7.5 Combining multiple models 7.6 Using unlabeled data 7.7 Further reading
8. Moving on: Extensions and applications
8.1 Learning from massive datasets 8.2 Incorporating domain knowledge 8.3 Text and Web mining 8.4 Adversarial situations 8.5 Ubiquitous data mining 8.6 Further readingPart II: The Weka machine learning workbench
9. Introduction to Weka
9.1 What?s in Weka? 9.2 How do you use it? 9.3 What else can you do?
10. The Explorer
10.1 Getting started 10.2 Exploring the Explorer 10.3 Filtering algorithms 10.4 Learning algorithms 10.5 Meta-learning algorithms 10.6 Clustering algorithms 10.7 Association-rule learners 10.8 Attribute selection
11. The Knowledge Flow interface
11.1 Getting started 11.2 Knowledge Flow components 11.3 Configuring and connecting the components 11.4 Incremental learning
12. The Experimenter
12.1 Getting started 12.2 Simple setup 12.3 Advanced setup 12.4 The Analyze panel 12.5 Distributing processing over several machines
13. The command-line interface
13.1 Getting started 13.2 The structure of Weka 13.3 Command-line options
14. Embedded machine learning
15. Writing new learning schemes
References Index
商品描述(中文翻譯)
**描述**
與任何受到商業關注的新興技術一樣,資料探勘的使用被包圍在大量的炒作之中。誇大的報導講述了透過將演算法釋放到海量數據中可以揭示的秘密。但機器學習並沒有魔法,沒有隱藏的力量,也沒有煉金術。相反,存在一套可識別的實用技術,可以從原始數據中提取有用的信息。本書描述了這些技術並展示了它們的運作方式。本書是1999年首次出版的版本的重大修訂。雖然基本核心保持不變,但已更新以反映五年來的變化,參考文獻幾乎增加了一倍。新版本的亮點包括三十個新的技術部分;增強的Weka機器學習工作台,現在具有互動界面;關於神經網絡的全面信息;一個新的貝葉斯網絡部分;以及更多內容。
**目錄**
前言
1. 這一切是關於什麼?
1.1 資料探勘與機器學習
1.2 簡單範例:天氣問題及其他
1.3 實際應用
1.4 機器學習與統計
1.5 一般化作為搜尋
1.6 資料探勘與倫理
1.7 進一步閱讀
2. 輸入:概念、實例、屬性
2.1 什麼是概念?
2.2 實例中包含什麼?
2.3 屬性中包含什麼?
2.4 準備輸入
2.5 進一步閱讀
3. 輸出:知識表示
3.1 決策表
3.2 決策樹
3.3 分類規則
3.4 關聯規則
3.5 具有例外的規則
3.6 涉及關係的規則
3.7 用於數值預測的樹
3.8 基於實例的表示
3.9 群集
3.10 進一步閱讀
4. 演算法:基本方法
4.1 推斷基本規則
4.2 統計建模
4.3 分而治之:構建決策樹
4.4 覆蓋演算法:構建規則
4.5 探勘關聯規則
4.6 線性模型
4.7 基於實例的學習
4.8 群集
4.9 進一步閱讀
5. 可信度:評估所學到的內容
5.1 訓練與測試
5.2 預測性能
5.3 交叉驗證
5.4 其他估算
5.5 比較資料探勘方案
5.6 預測概率
5.7 計算成本
5.8 評估數值預測
5.9 最小描述長度原則
5.10 將MDL應用於群集
5.11 進一步閱讀
6. 實作:真實的機器學習方案
6.1 決策樹
6.2 分類規則
6.3 擴展線性模型
6.4 基於實例的學習
6.5 數值預測
6.6 群集
6.7 貝葉斯網絡
7. 轉換:工程化輸入與輸出
7.1 屬性選擇
7.2 離散化數值屬性
7.3 一些有用的轉換
7.4 自動數據清理
7.5 結合多個模型
7.6 使用未標記數據
7.7 進一步閱讀
8. 繼續前進:擴展與應用
8.1 從大規模數據集中學習
8.2 融入領域知識
8.3 文本與網頁探勘
8.4 對抗情境
8.5 無所不在的資料探勘
8.6 進一步閱讀
**第二部分:Weka機器學習工作台**
9. Weka簡介
9.1 Weka中包含什麼?
9.2 如何使用它?
9.3 還可以做什麼?
10. 探索者
10.1 開始使用
10.2 探索探索者
10.3 過濾演算法
10.4 學習演算法
10.5 元學習演算法
10.6 群集演算法
10.7 關聯規則學習器
10.8 屬性選擇
11. 知識流介面
11.1 開始使用
11.2 知識流組件
11.3 配置和連接組件
11.4 增量學習
12. 實驗者
12.1 開始使用
12.2 簡單設置
12.3 高級設置
12.4 分析面板
12.5 在多台機器上分配處理
13. 命令行介面
13.1 開始使用
13.2 Weka的結構
13.3 命令行選項
14. 嵌入式機器學習
15. 編寫新的學習方案
參考文獻 索引