OpenAI GPT For Python Developers - 2nd Edition: The art and science of building AI-powered apps with GPT-4, Whisper, Weaviate, and beyond
暫譯: Python 開發者的 OpenAI GPT - 第二版:使用 GPT-4、Whisper、Weaviate 等構建 AI 驅動應用的藝術與科學

El Amri, Aymen

  • 出版商: Independently Published
  • 出版日期: 2024-02-14
  • 售價: $1,470
  • 貴賓價: 9.5$1,397
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798879612257
  • ISBN-13: 9798879612257
  • 相關分類: Python程式語言
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

The knowledge you'll acquire from this guide will be applicable to the current families of GPT models (GPT-3, GPT-3.5, GPT-4, etc.) and will likely also be relevant to GPT-5, should it ever be released.

OpenAI provides APIs (Application Programming Interfaces) to access their AI. The goal of an API is to abstract the underlying models by creating a universal interface for all versions, allowing users to use GPT regardless of its version.

This guide aims to provide a comprehensive, step-by-step tutorial on how to utilize GPT-3.5 and GPT-4 in your projects via this API. It also covers other models, such as Whisper and Text-to-Speech.

If you're developing a chatbot, an AI assistant, or a web application that utilizes AI-generated data, this guide will assist you in achieving your objectives.

If you have a basic understanding of the Python programming language and are willing to learn a few additional techniques, such as using Pandas Dataframes and some NLP methods, you possess all the necessary tools to start building intelligent systems with OpenAI tools.

Rest assured, you don't need to be a data scientist, machine learning engineer, or AI expert to comprehend and implement the concepts, techniques, and tutorials presented in this guide. The explanations provided are straightforward and easy to understand, featuring simple Python code, examples, and hands-on exercises.

This guide emphasizes practical, hands-on learning and is designed to assist readers in building real-world applications. It is example-driven and provides numerous practical examples to help readers understand the concepts and apply them to real-life scenarios to solve real-world problems.

By the end of your learning journey, you will have developed applications such as:

  • Fine-tuned, domain-specific chatbots.
  • An intelligent conversational system with memory and context.
  • A semantic modern search engine using RAG and other techniques.
  • An intelligent coffee recommendation system based on your taste.
  • A chatbot assistant to assist with Linux commands
  • A fine-tuned news category prediction system.
  • An AI-to-AI autonomous discussion system to simulate human-like conversations or solve problems
  • An AI-based mental health coach trained on a large dataset of mental health conversations
  • and more!

By reading this guide and following the examples, you will be able to:

  • Understand the different models available, and how and when to use each one.
  • Generate human-like text for various purposes, such as answering questions, creating content, and other creative uses.
  • Control the creativity of GPT models and adopt the best practices to generate high-quality text.
  • Transform and edit the text to perform translation, formatting, and other useful tasks.
  • Optimize the performance of GPT models using various parameters and options such as max_tokens, temperature, top_p, n, stream, logprobs, stop, presence_penalty, frequency_penalty, best_of, and others.
  • Stem, lemmatize and reduce your costs when using the API.
  • Understand Context Stuffing, chaining, and practice prompt engineering.
  • Implement a chatbot with memory and context.
  • Create prediction algorithms and zero-shot techniques and evaluate their accuracy.
  • Understand, practice, and improve few-shot learning.
  • Understand fine-tuning and leverage its power to create your own fine-tuned models.
  • Understand and use fine-tuning best practices
  • Practice training and classification techniques using GPT.
  • Understand embedding and how companies such as Tesla and Notion are using it.
  • Understand and implement semantic search, RAG, and other advanced tools and concepts.
  • Integrate a Vector Database (e.g.: Weaviate) with your intelligent systems.

商品描述(中文翻譯)

這本指南將讓您獲得的知識適用於當前的 GPT 模型系列(如 GPT-3、GPT-3.5、GPT-4 等),並且如果未來推出 GPT-5,這些知識也可能會相關。OpenAI 提供 API(應用程式介面)來訪問他們的 AI。API 的目標是通過創建一個通用介面來抽象底層模型,讓用戶無論使用哪個版本的 GPT 都能夠使用。

本指南旨在提供一個全面的逐步教程,教您如何通過這個 API 在您的項目中利用 GPT-3.5 和 GPT-4。它還涵蓋了其他模型,如 Whisper 和 Text-to-Speech。

如果您正在開發聊天機器人、AI 助手或利用 AI 生成數據的網頁應用程式,本指南將幫助您實現您的目標。

如果您對 Python 程式語言有基本了解,並願意學習一些額外的技術,例如使用 Pandas Dataframes 和一些自然語言處理(NLP)方法,您就擁有了開始使用 OpenAI 工具構建智能系統所需的所有工具。

請放心,您不需要成為數據科學家、機器學習工程師或 AI 專家,就能理解和實施本指南中所介紹的概念、技術和教程。所提供的解釋簡單易懂,包含簡單的 Python 代碼、範例和實作練習。

本指南強調實踐和動手學習,旨在幫助讀者構建實際應用。它以範例為主,提供大量實用範例,幫助讀者理解概念並將其應用於現實情境中,以解決實際問題。

在您的學習旅程結束時,您將能夠開發出以下應用程式:
- 微調的特定領域聊天機器人。
- 具有記憶和上下文的智能對話系統。
- 使用 RAG 和其他技術的語義現代搜索引擎。
- 根據您的口味推薦咖啡的智能推薦系統。
- 協助 Linux 命令的聊天機器人助手。
- 微調的新聞類別預測系統。
- 一個 AI 對 AI 的自主討論系統,用於模擬類人對話或解決問題。
- 基於大型心理健康對話數據集訓練的 AI 心理健康教練。
- 以及更多!

通過閱讀本指南並遵循範例,您將能夠:
- 理解可用的不同模型,以及如何和何時使用每一個。
- 生成類人文本以用於各種目的,例如回答問題、創建內容和其他創意用途。
- 控制 GPT 模型的創造力,並採用最佳實踐來生成高質量文本。
- 轉換和編輯文本以執行翻譯、格式化和其他有用的任務。
- 使用各種參數和選項(如 max_tokens、temperature、top_p、n、stream、logprobs、stop、presence_penalty、frequency_penalty、best_of 等)來優化 GPT 模型的性能。
- 在使用 API 時進行詞幹提取、詞形還原並降低成本。
- 理解上下文填充、鏈接和實踐提示工程。
- 實現具有記憶和上下文的聊天機器人。
- 創建預測算法和零樣本技術並評估其準確性。
- 理解、實踐並改進少樣本學習。
- 理解微調並利用其力量創建自己的微調模型。
- 理解並使用微調最佳實踐。
- 實踐使用 GPT 的訓練和分類技術。
- 理解嵌入技術以及特斯拉和 Notion 等公司如何使用它。
- 理解並實施語義搜索、RAG 和其他先進工具和概念。
- 將向量數據庫(例如:Weaviate)與您的智能系統集成。