Statistical Quantitative Methods in Finance: From Theory to Quantitative Portfolio Management
暫譯: 金融中的統計量化方法:從理論到量化投資組合管理
Ahlawat, Samit
- 出版商: Apress
- 出版日期: 2025-01-23
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 295
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798868809613
- ISBN-13: 9798868809613
海外代購書籍(需單獨結帳)
商品描述
Statistical quantitative methods are vital for financial valuation models and benchmarking machine learning models in finance.
This book explores the theoretical foundations of statistical models, from ordinary least squares (OLS) to the generalized method of moments (GMM) used in econometrics. It enriches your understanding through practical examples drawn from applied finance, demonstrating the real-world applications of these concepts. Additionally, the book delves into non-linear methods and Bayesian approaches, which are becoming increasingly popular among practitioners thanks to advancements in computational resources. By mastering these topics, you will be equipped to build foundational models crucial for applied data science, a skill highly sought after by software engineering and asset management firms. The book also offers valuable insights into quantitative portfolio management, showcasing how traditional data science tools can be enhanced with machine learning models. These enhancements are illustrated through real-world examples from finance and econometrics, accompanied by Python code. This practical approach ensures that you can apply what you learn, gaining proficiency in the statsmodels library and becoming adept at designing, implementing, and calibrating your models.
By understanding and applying these statistical models, you enhance your data science skills and effectively tackle financial challenges.
What You Will Learn
- Understand the fundamentals of linear regression and its applications in financial data analysis and prediction
- Apply generalized linear models for handling various types of data distributions and enhancing model flexibility
- Gain insights into regime switching models to capture different market conditions and improve financial forecasting
- Benchmark machine learning models against traditional statistical methods to ensure robustness and reliability in financial applications
Who This Book Is For
Data scientists, machine learning engineers, finance professionals, and software engineers
商品描述(中文翻譯)
統計量化方法對於金融估值模型和金融領域的機器學習模型基準測試至關重要。
本書探討了統計模型的理論基礎,從普通最小二乘法(Ordinary Least Squares, OLS)到在計量經濟學中使用的廣義矩估計法(Generalized Method of Moments, GMM)。通過來自應用金融的實際範例,豐富您的理解,展示這些概念在現實世界中的應用。此外,本書深入探討了非線性方法和貝葉斯方法,這些方法因計算資源的進步而在實務中越來越受歡迎。掌握這些主題後,您將能夠建立對於應用數據科學至關重要的基礎模型,這是一項軟體工程和資產管理公司高度追求的技能。本書還提供了有關量化投資組合管理的寶貴見解,展示如何利用機器學習模型增強傳統數據科學工具。這些增強通過來自金融和計量經濟學的實際範例以及Python代碼進行說明。這種實用的方法確保您能夠應用所學,熟練掌握statsmodels庫,並能夠設計、實施和校準您的模型。
通過理解和應用這些統計模型,您將提升數據科學技能,有效應對金融挑戰。
您將學到的內容:
- 理解線性回歸的基本原理及其在金融數據分析和預測中的應用
- 應用廣義線性模型來處理各類數據分佈並增強模型的靈活性
- 獲得對於狀態轉換模型的見解,以捕捉不同的市場條件並改善金融預測
- 將機器學習模型與傳統統計方法進行基準測試,以確保在金融應用中的穩健性和可靠性
本書適合對象:
數據科學家、機器學習工程師、金融專業人士和軟體工程師
作者簡介
Samit Ahlawat is a portfolio manager at QSpark Investment, specializing in US equity and derivative trading. He has extensive experience in quantitative asset management and market risk management, having previously worked at JP Morgan Chase and Bank of America. His research interests include artificial intelligence, risk management, and algorithmic trading strategies. Samit holds a master's degree in numerical computation from the University of Illinois, Urbana-Champaign.
作者簡介(中文翻譯)
Samit Ahlawat 是 QSpark Investment 的投資組合經理,專注於美國股票和衍生品交易。他在量化資產管理和市場風險管理方面擁有豐富的經驗,曾在摩根大通(JP Morgan Chase)和美國銀行(Bank of America)工作。他的研究興趣包括人工智慧、風險管理和算法交易策略。Samit 擁有伊利諾伊大學香檳分校(University of Illinois, Urbana-Champaign)的數值計算碩士學位。