GPT-4 Complete: A comprehensive technical guide to the new OpenAI model
Huck, Mark
- 出版商: Independently Published
- 出版日期: 2023-04-03
- 售價: $1,100
- 貴賓價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 216
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798390009154
- ISBN-13: 9798390009154
-
相關分類:
ChatGPT、人工智慧、Text-mining
無法訂購
買這商品的人也買了...
-
$450$356 -
$1,100$1,045 -
$1,350Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux (Paperback)
-
$1,090$1,036 -
$1,910$1,815 -
$1,120$1,064 -
$2,070$1,967 -
$750$495 -
$600$468 -
$620$465 -
$1,500$1,425 -
$474$450 -
$620$490 -
$680$537 -
$1,200$792 -
$680$530 -
$266ChatGPT 時代:ChatGPT 全能應用一本通
-
$880$695 -
$650$507 -
$520$343 -
$720$562
相關主題
商品描述
"#1 New Release in Artificial Intelligence" (Amazon, April 2023) ... Here is the definitive technical guide to GPT-4 as well as its loquacious counterpart, ChatGPT. Along with step-by-step examples for prompt engineering and fine tuning, the book looks at the current discussions around the technology's promise and peril. Includes a 2-year subscription to GPTAnalytica's PromptBuilder tool. Contents:
=============================
1 Preface
2 A short history of intelligence
. . 2.1 What is "intelligence"?
. . 2.2 Intelligence and humans
. . 2.3 Intelligence and computing
. . 2.4 Artificial intelligence
. . 2.5 Generative AI
. . 2.6 Conversant AI
. . 2.7 The Promethean Moment 3 Models and sources
. . 3.1 Natural Language Processing (NLP)
. . 3.2 Language Modeling (LM)
. . 3.3 Pre-GPT Language Models
. . 3.4 GPT Language Models
. . . . 3.4.1 From data to training set
. . . . 3.4.2 Limitations and bias
. . 3.5 Common Crawl
. . 3.6 WebText data set
. . . . 3.6.1 Test set
. . 3.7 Wikipedia
. . 3.8 Quality of sources 4 GPT-3
. . 4.1 Tokens
. . 4.2 Parameters
. . 4.3 GPT-3 and ChatGPT 5 GPT-4 6 ChatGPT 7 Using GPT and ChatGPT in OpenAI
. . 7.1 Playground
. . . . 7.1.1 Mode
. . . . 7.1.2 Model
. . . . 7.1.3 Temperature
. . 7.2 ChatGPT playground
. . 7.3 Get your API key
. . 7.4 Programmatic use of OpenAI
. . . . 7.4.1 Import the openai library
. . . . 7.4.2 An example chat API call 8 OpenAI via Python 9 OpenAI via Node.js 10 OpenAI .NET API 11 Prompt engineering
. . 11.1 Misunderstanding in human communication
. . 11.2 Misunderstanding in ChatGPT
. . 11.3 Model capabilities depend on context
. . 11.4 How to improve reliability on complex tasks
. . . . 11.4.1 Provide quality data
. . . . 11.4.2 Check your settings
. . . . 11.4.3 Use plain language to describe your inputs and outputs
. . . . 11.4.4 Show the API how to respond to any case
. . . . 11.4.5 Add context
. . . . 11.4.6 Include helpful information up-front
. . . . 11.4.7 Give examples
. . . . 11.4.8 Length of response
. . . . 11.4.9 Define a role
. . . . 11.4.10 Be more specific
. . . . 11.4.11 Divide a complex task into simpler tasks
. . . . 11.4.12 Prompt the model to explain before answering
. . . . 11.4.13 Ask for explanations before the answer 12 Fine tuning with a custom dataset
. . 12.1 Extract data into a csv file
. . 12.2 Check the headers in OpenAI
. . 12.3 Playground
. . 12.4 Create Prompt and Completion Pairs
. . 12.5 Prepare for GPT
. . 12.6 Fine-tune a GPT model with your data
. . 12.7 Interact with your fine-tuned model 13 Robust fine tuning
. . 13.1 Creating a robust, fine-tuned GPT model
. . . . 13.1.1 Step 1: Data preparation
. . . . 13.1.2 Step 2: Model architecture selection
. . . . 13.1.3 Step 3: Model training
. . . . 13.1.4 Step 4: Model evaluation 14 Self-taught reasoner 15 Data retrieval plug-in
. . 15.1 Plugins
. . 15.2 Retrieval Plugin
. . 15.3 Memory Feature
. . 15.4 Security
. . 15.5 API Endpoints
. . 15.6 Quickstart 16 Additional techniques
. . 16.1 Selection-inference prompting
. . 16.2 Faithful reasoning architecture
. . 16.3 Least-to-most prompting 17 Act-as prompts 18 Prompt templates 19 Template libraries 20 Prompt generators 21 GPTAnalytica PromptBuilder (user guide)
=============================
1 Preface
2 A short history of intelligence
. . 2.1 What is "intelligence"?
. . 2.2 Intelligence and humans
. . 2.3 Intelligence and computing
. . 2.4 Artificial intelligence
. . 2.5 Generative AI
. . 2.6 Conversant AI
. . 2.7 The Promethean Moment 3 Models and sources
. . 3.1 Natural Language Processing (NLP)
. . 3.2 Language Modeling (LM)
. . 3.3 Pre-GPT Language Models
. . 3.4 GPT Language Models
. . . . 3.4.1 From data to training set
. . . . 3.4.2 Limitations and bias
. . 3.5 Common Crawl
. . 3.6 WebText data set
. . . . 3.6.1 Test set
. . 3.7 Wikipedia
. . 3.8 Quality of sources 4 GPT-3
. . 4.1 Tokens
. . 4.2 Parameters
. . 4.3 GPT-3 and ChatGPT 5 GPT-4 6 ChatGPT 7 Using GPT and ChatGPT in OpenAI
. . 7.1 Playground
. . . . 7.1.1 Mode
. . . . 7.1.2 Model
. . . . 7.1.3 Temperature
. . 7.2 ChatGPT playground
. . 7.3 Get your API key
. . 7.4 Programmatic use of OpenAI
. . . . 7.4.1 Import the openai library
. . . . 7.4.2 An example chat API call 8 OpenAI via Python 9 OpenAI via Node.js 10 OpenAI .NET API 11 Prompt engineering
. . 11.1 Misunderstanding in human communication
. . 11.2 Misunderstanding in ChatGPT
. . 11.3 Model capabilities depend on context
. . 11.4 How to improve reliability on complex tasks
. . . . 11.4.1 Provide quality data
. . . . 11.4.2 Check your settings
. . . . 11.4.3 Use plain language to describe your inputs and outputs
. . . . 11.4.4 Show the API how to respond to any case
. . . . 11.4.5 Add context
. . . . 11.4.6 Include helpful information up-front
. . . . 11.4.7 Give examples
. . . . 11.4.8 Length of response
. . . . 11.4.9 Define a role
. . . . 11.4.10 Be more specific
. . . . 11.4.11 Divide a complex task into simpler tasks
. . . . 11.4.12 Prompt the model to explain before answering
. . . . 11.4.13 Ask for explanations before the answer 12 Fine tuning with a custom dataset
. . 12.1 Extract data into a csv file
. . 12.2 Check the headers in OpenAI
. . 12.3 Playground
. . 12.4 Create Prompt and Completion Pairs
. . 12.5 Prepare for GPT
. . 12.6 Fine-tune a GPT model with your data
. . 12.7 Interact with your fine-tuned model 13 Robust fine tuning
. . 13.1 Creating a robust, fine-tuned GPT model
. . . . 13.1.1 Step 1: Data preparation
. . . . 13.1.2 Step 2: Model architecture selection
. . . . 13.1.3 Step 3: Model training
. . . . 13.1.4 Step 4: Model evaluation 14 Self-taught reasoner 15 Data retrieval plug-in
. . 15.1 Plugins
. . 15.2 Retrieval Plugin
. . 15.3 Memory Feature
. . 15.4 Security
. . 15.5 API Endpoints
. . 15.6 Quickstart 16 Additional techniques
. . 16.1 Selection-inference prompting
. . 16.2 Faithful reasoning architecture
. . 16.3 Least-to-most prompting 17 Act-as prompts 18 Prompt templates 19 Template libraries 20 Prompt generators 21 GPTAnalytica PromptBuilder (user guide)
商品描述(中文翻譯)
「人工智慧領域的全球暢銷書」(亞馬遜,2023年4月)... 這本書是關於GPT-4和其對話型對應物ChatGPT的權威技術指南。除了提供逐步示例以進行提示工程和微調外,本書還探討了有關該技術的前景和風險的當前討論。附帶2年GPTAnalytica PromptBuilder工具的訂閱。內容包括:
目錄:=============================
1 前言
2 智能的簡史
. . 2.1 什麼是「智能」?
. . 2.2 智能與人類
. . 2.3 智能與計算
. . 2.4 人工智能
. . 2.5 生成式人工智能
. . 2.6 對話式人工智能
. . 2.7 普羅米修斯時刻3 模型和資源
. . 3.1 自然語言處理(NLP)
. . 3.2 語言模型(LM)
. . 3.3 GPT之前的語言模型
. . 3.4 GPT語言模型
. . . . 3.4.1 從數據到訓練集
. . . . 3.4.2 限制和偏見
. . 3.5 Common Crawl
. . 3.6 WebText數據集
. . . . 3.6.1 測試集
. . 3.7 維基百科
. . 3.8 資源的品質4 GPT-3
. . 4.1 標記
. . 4.2 參數
. . 4.3 GPT-3和ChatGPT5 GPT-46 ChatGPT7 在OpenAI中使用GPT和ChatGPT
. . 7.1 遊樂場
. . . . 7.1.1 模式
. . . . 7.1.2 模型
. . . . 7.1.3 溫度
. . 7.2 ChatGPT遊樂場
. . 7.3 獲取API密鑰
. . 7.4 使用OpenAI的程式化方法
. . . . 7.4.1 導入openai庫
. . . . 7.4.2 一個示例的聊天API調用8 通過Python使用OpenAI9 通過Node.js使用OpenAI10 OpenAI .NET API11 提示工程
. . 11.1 人類溝通中的誤解
. . 11.2 ChatGPT中的誤解
. . 11.3 模型能力取決於上下文
. . 11.4 如何提高複雜任務的可靠性
. . . . 11.4.1 提供優質數據
. . . . 11.4.2 檢查設置
. . . . 11.4.3 使用簡單的語言描述輸入和輸出
. . . . 11.4.4 向API展示如何應對任何情況
. . . . 11.4.5 添加上下文
. . . . 11.4.6 提供有用的信息
. . . . 11.4.7 提供示例
. . . . 11.4.8 回應的長度
. . . . 11.4.9 定義一個角色
. . . . 11.4.10 更具體
. . . . 11.4.11 將複雜任務分解為簡單任務
. . . . 11.4.12 在回答之前提示模型解釋
. . . . 11.4.13 在回答之前要求解釋12 使用自定義數據集進行微調
. . 12.1 將數據提取到csv文件中
. . 12.2 檢查OpenAI中的標題
. . 12.3 遊樂場
. . 12.4 創建提示和完成對
. . 12.5 為GPT做準備
. . 12.6 使用您的數據對GPT模型進行微調
. . 12.7 與您的微調模型互動13 魯棒微調
. . 13.1 創建一個魯棒的微調GPT模型
. . . . 13.1.1 步驟1:數據準備
. . . . 13.1.2 步驟2:模型架構選擇
. . . . 13.1.3 步驟3:模型訓練
. . . . 13.1.4 步驟4:模型評估14 自學推理者15 數據檢索插件
. . 15.1 插件
. . 15.2 檢索插件
. . 15.3 記憶特徵
. . 15.4 安全性
. . 15.5 API端點
. . 15.6 快速入門16 附加技術
. . 16.1 選擇-推理提示
. . 16.2 忠實推理架構
. . 16.3 從最少到最多的提示17 扮演提示角色18 提示模板19 模板庫20 提示生成器21 GPTAnalytica PromptBuilder(使用指南)