LLM Training: Techniques and Applications

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-19
  • 售價: $1,100
  • 貴賓價: 9.5$1,045
  • 語言: 英文
  • 頁數: 50
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798333539328
  • ISBN-13: 9798333539328
  • 相關分類: LangChain
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

LLM Training: Techniques and Applications is a comprehensive guide designed to provide a deep understanding of large language models (LLMs) and their transformative potential. The book covers the entire lifecycle of LLM development, from data collection and preprocessing to deployment and integration into real-world applications. It aims to equip readers with the knowledge and tools necessary to effectively train, fine-tune, and utilize LLMs for a wide range of tasks.

The book begins with an introduction to LLMs, explaining their significance and the evolution of natural language processing (NLP) technologies. It delves into the history and development of LLMs, highlighting key milestones and advancements that have shaped the field. Readers gain insights into various applications of LLMs, including text generation, translation, summarization, and more.

Fundamentals of NLP are thoroughly explored, providing an overview of key concepts and techniques essential for understanding LLMs. The book covers common NLP tasks and challenges, setting the stage for deeper discussions on LLM architecture. Detailed explanations of neural networks, transformer architecture, and attention mechanisms help readers grasp the underlying principles of LLMs. Model variants such as GPT, BERT, and their derivatives are also discussed to showcase the diversity within the field.

Data collection and preprocessing are critical steps in LLM training, and this book provides practical guidance on sourcing, cleaning, normalizing, tokenizing, and encoding data. Techniques for handling imbalanced data ensure robust model performance. The training process is covered comprehensively, including setting up the training environment, optimization techniques, hyperparameter tuning, and distributed training strategies.

Fine-tuning and transfer learning are essential for adapting LLMs to specific tasks and domains. The book emphasizes the importance of these techniques and provides strategies for effective implementation. It also includes case studies and examples to illustrate successful applications of fine-tuning.

Evaluation and metrics are crucial for assessing model performance, and the book details various metrics, validation techniques, and benchmarking methods. Practical considerations such as computational resources, training costs, debugging, and ethical concerns are addressed to prepare readers for real-world challenges.

Advanced techniques, including reinforcement learning, multi-task learning, and zero-shot learning, are explored to keep readers abreast of the latest innovations. The book concludes with insights into future trends and research directions, offering a forward-looking perspective on the field.

商品描述(中文翻譯)

《LLM訓練:技術與應用》是一本全面的指南,旨在提供對大型語言模型(LLMs)及其變革潛力的深入理解。該書涵蓋了LLM開發的整個生命周期,從數據收集和預處理到部署及整合到現實世界應用中。它旨在使讀者具備有效訓練、微調和利用LLMs以應對各種任務所需的知識和工具。

本書首先介紹了LLMs,解釋了它們的重要性以及自然語言處理(NLP)技術的演變。它深入探討了LLMs的歷史和發展,突顯了塑造該領域的關鍵里程碑和進展。讀者將獲得對LLMs各種應用的見解,包括文本生成、翻譯、摘要等。

NLP的基本原理被徹底探討,提供了理解LLMs所需的關鍵概念和技術概述。該書涵蓋了常見的NLP任務和挑戰,為深入討論LLM架構奠定了基礎。對神經網絡、變壓器架構和注意力機制的詳細解釋幫助讀者掌握LLMs的基本原則。書中還討論了GPT、BERT及其衍生模型等模型變體,以展示該領域的多樣性。

數據收集和預處理是LLM訓練中的關鍵步驟,本書提供了有關數據來源、清理、標準化、分詞和編碼的實用指導。處理不平衡數據的技術確保了模型的穩健性能。訓練過程被全面涵蓋,包括設置訓練環境、優化技術、超參數調整和分佈式訓練策略。

微調和遷移學習對於將LLMs適應於特定任務和領域至關重要。本書強調這些技術的重要性,並提供有效實施的策略。它還包括案例研究和示例,以說明微調的成功應用。

評估和指標對於評估模型性能至關重要,本書詳細介紹了各種指標、驗證技術和基準測試方法。實際考量如計算資源、訓練成本、除錯和倫理問題也得到了關注,以幫助讀者應對現實世界的挑戰。

高級技術,包括強化學習、多任務學習和零樣本學習,將被探討,以使讀者了解最新的創新。該書以對未來趨勢和研究方向的見解作結,提供了對該領域的前瞻性視角。