Understanding LLM: A Comprehensive Guide to Large Language Models
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-07-13
- 售價: $1,110
- 貴賓價: 9.5 折 $1,055
- 語言: 英文
- 頁數: 70
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798333036605
- ISBN-13: 9798333036605
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
Understanding LLM: A Comprehensive Guide to Large Language Models" delves into the intricacies of large language models (LLMs), revolutionizing AI capabilities in understanding and generating human-like text. This comprehensive guide explores the evolution of LLMs from rule-based systems to advanced deep learning architectures, highlighting key milestones and core concepts such as tokens, embeddings, and attention mechanisms.
The book navigates through essential topics in LLM implementation, covering neural network fundamentals, transformers architecture, and techniques for pretraining and fine-tuning models. It emphasizes practical strategies for data preparation, managing large datasets, optimizing training performance, and deploying models effectively using frameworks like TensorFlow and PyTorch.
Ethical considerations in LLM development are thoroughly examined, focusing on transparency, accountability, bias detection, and fairness. Case studies across healthcare, finance, and entertainment showcase real-world applications, demonstrating how LLMs enhance tasks like text generation, classification, and conversational AI.
The future of LLMs is explored in-depth, highlighting emerging trends such as multimodal models, explainable AI, and opportunities for personalized AI applications. Technical challenges like scalability and data privacy are addressed, alongside growth opportunities in interdisciplinary research and AI for social good.
商品描述(中文翻譯)
《理解 LLM:大型語言模型的綜合指南》深入探討大型語言模型(LLMs)的複雜性,徹底改變了人工智慧在理解和生成類人文本方面的能力。本書全面回顧了 LLM 從基於規則的系統到先進深度學習架構的演變,突顯了關鍵里程碑和核心概念,如 tokens、embeddings 和注意力機制。
本書涵蓋 LLM 實作中的基本主題,包括神經網絡基礎、transformers 架構,以及預訓練和微調模型的技術。它強調了數據準備的實用策略、管理大型數據集、優化訓練性能,以及使用 TensorFlow 和 PyTorch 等框架有效部署模型。
LLM 開發中的倫理考量被徹底檢視,重點關注透明度、問責制、偏見檢測和公平性。醫療、金融和娛樂等領域的案例研究展示了實際應用,說明 LLM 如何增強文本生成、分類和對話式 AI 等任務。
本書深入探討 LLM 的未來,突顯了多模態模型、可解釋的 AI 和個性化 AI 應用的機會等新興趨勢。技術挑戰如可擴展性和數據隱私也得到了關注,並探討了跨學科研究和社會公益 AI 的增長機會。