Hands-On Python and Scikit-Learn: A Practical Guide to Machine Learning
暫譯: 實戰 Python 與 Scikit-Learn:機器學習實用指南

Hassan, Sarful

  • 出版商: Independently Published
  • 出版日期: 2025-02-05
  • 售價: $780
  • 貴賓價: 9.5$741
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798309513123
  • ISBN-13: 9798309513123
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Hands-On Python and Scikit-Learn: A Practical Guide to Machine Learning
Master Machine Learning with Python and Scikit-Learn

Are you ready to dive into the world of machine learning? Hands-On Python and Scikit-Learn: A Practical Guide to Machine Learning is your ultimate guide to mastering data preprocessing, model building, and evaluation using Python and Scikit-Learn.

Why This Book?

Comprehensive & Hands-On - Covers supervised and unsupervised learning, model evaluation, and workflow automation. ✅ Real-World Applications - Learn to build models for predictive analytics, fraud detection, sentiment analysis, and more. ✅ Optimized for Python - Uses Python 3.x for efficient and scalable implementations. ✅ For Beginners & Professionals - Suitable for students, developers, and data scientists looking to master Scikit-Learn.

What You'll Learn

✔️ Setting up Scikit-Learn for machine learning projects ✔️ Data preprocessing, feature selection, and transformation ✔️ Implementing linear regression, decision trees, SVMs, and ensemble models ✔️ Hyperparameter tuning and model optimization techniques ✔️ Clustering, anomaly detection, and dimensionality reduction ✔️ Building real-world machine learning applications

Who Should Read This Book?

商品描述(中文翻譯)

**實戰 Python 與 Scikit-Learn:機器學習的實用指南**
**掌握 Python 與 Scikit-Learn 的機器學習**
你準備好進入 **機器學習** 的世界了嗎? *實戰 Python 與 Scikit-Learn:機器學習的實用指南* 是你掌握 **數據預處理、模型建立與評估** 的終極指南,使用 **Python 和 Scikit-Learn**。

**為什麼選擇這本書?**
✔️ **全面且實用** - 涵蓋 **監督式學習和非監督式學習**、模型評估和工作流程自動化。
✔️ **真實世界應用** - 學習建立 **預測分析、詐騙檢測、情感分析等** 模型。
✔️ **針對 Python 優化** - 使用 **Python 3.x** 進行高效且可擴展的實作。
✔️ **適合初學者與專業人士** - 適合希望 **精通 Scikit-Learn** 的 **學生、開發者和數據科學家**。

**你將學到什麼**
✅ 設定 Scikit-Learn 以進行機器學習專案
✅ 數據預處理、特徵選擇與轉換
✅ 實作 **線性回歸、決策樹、支持向量機 (SVM) 和集成模型**
✅ 超參數調整與 **模型優化技術**
✅ 聚類、異常檢測與降維
✅ 建立 **真實世界的機器學習應用**

**誰應該閱讀這本書?**