Mastering Scikit-Learn: Practical ML for Everyone
暫譯: 精通 Scikit-Learn:人人皆可實踐的機器學習

Gutiérrez, Gilbert

  • 出版商: Independently Published
  • 出版日期: 2025-02-05
  • 售價: $1,370
  • 貴賓價: 9.5$1,302
  • 語言: 英文
  • 頁數: 324
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798309510177
  • ISBN-13: 9798309510177
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

AI from Scratch: Step-by-Step Guide to Mastering Artificial Intelligence - Book 5

Unlock the power of machine learning with Scikit-Learn, Python's most popular ML library! Whether you're a beginner looking to understand the basics or a professional aiming to refine your skills, Mastering Scikit-Learn: Practical ML for Everyone is your ultimate guide to building, optimizing, and deploying machine learning models effectively.

This book is the fifth installment in the AI from Scratch series, designed to provide a structured, hands-on approach to mastering artificial intelligence. With real-world case studies, step-by-step tutorials, and best practices, you'll gain the confidence to apply machine learning to real business and research problems.

What You'll Learn:

Part 1: Getting Started with Scikit-Learn

  • Introduction to machine learning and the Scikit-Learn ecosystem
  • Setting up your Python environment and loading datasets
  • Data preprocessing: handling missing values, feature scaling, and encoding categorical variables

Part 2: Core Machine Learning Models
  • Implementing linear regression, logistic regression, and decision trees
  • Building powerful ensemble models like Random Forest and Gradient Boosting
  • Understanding Support Vector Machines (SVMs) and clustering techniques (K-Means, DBSCAN, PCA)

Part 3: Advanced Techniques & Optimization
  • Feature engineering and recursive feature elimination
  • Hyperparameter tuning with GridSearchCV and Bayesian optimization
  • Handling imbalanced data, anomaly detection, and data augmentation
  • Automating ML workflows with Pipelines and AutoML

Part 4: Real-World Applications & Deployment
  • End-to-end machine learning project case studies
  • Integrating Scikit-Learn with TensorFlow and PyTorch
  • Deploying ML models using Flask, FastAPI, and cloud platforms
  • Avoiding common pitfalls and optimizing model performance

Who Should Read This Book?
  • Beginners & Students - Learn machine learning from the ground up with hands-on coding examples.
  • Data Scientists & ML Engineers - Deepen your understanding of model tuning and feature engineering.
  • Software Developers - Implement Scikit-Learn models into real-world applications.
  • Business Analysts & AI Enthusiasts - Discover how ML models can drive data-driven decisions.

Why Choose This Book?
  • Step-by-Step Learning - Practical examples and code snippets guide you through each concept.
  • Real-World Case Studies - Apply machine learning to real datasets and projects.
  • Hands-on Approach - Learn by doing with interactive exercises and Python implementations.
  • Industry Best Practices - Avoid common pitfalls and optimize your ML models for accuracy and efficiency.
  • Part of the AI from Scratch Series - A structured learning path from beginner to AI mastery.

Start Your Machine Learning Journey Today!

Whether you're exploring machine learning for the first time or looking to enhance your skills, Mastering Scikit-Learn provides the tools, techniques, and knowledge you need to succeed.

Take the next step in your AI journey-Master Scikit-Learn and build powerful machine learning models today!

商品描述(中文翻譯)

從零開始的人工智慧:掌握人工智慧的逐步指南 - 第五本

釋放機器學習的力量,使用 Scikit-Learn,Python 最受歡迎的機器學習庫!無論您是想了解基礎的初學者,還是希望提升技能的專業人士,掌握 Scikit-Learn:人人都能實踐的機器學習 是您有效構建、優化和部署機器學習模型的終極指南。

本書是從零開始的人工智慧系列的第五本,旨在提供一個結構化的、實踐導向的方法來掌握人工智慧。通過真實案例研究、逐步教程和最佳實踐,您將獲得將機器學習應用於實際商業和研究問題的信心。

您將學到什麼:

第一部分:開始使用 Scikit-Learn

  • 機器學習和 Scikit-Learn 生態系統介紹

  • 設置您的 Python 環境和加載數據集

  • 數據預處理:處理缺失值、特徵縮放和編碼類別變量


第二部分:核心機器學習模型

  • 實現線性回歸、邏輯回歸和決策樹

  • 構建強大的集成模型,如隨機森林和梯度提升

  • 理解支持向量機(SVM)和聚類技術(K-Means、DBSCAN、PCA)


第三部分:進階技術與優化

  • 特徵工程和遞歸特徵消除

  • 使用 GridSearchCV 和貝葉斯優化進行超參數調整

  • 處理不平衡數據、異常檢測和數據增強

  • 使用管道和 AutoML 自動化機器學習工作流程


第四部分:實際應用與部署

  • 端到端機器學習項目案例研究

  • 將 Scikit-Learn 與 TensorFlow 和 PyTorch 整合

  • 使用 Flask、FastAPI 和雲平台部署機器學習模型

  • 避免常見陷阱並優化模型性能


誰應該閱讀本書?


  • 初學者與學生 - 從基礎開始學習機器學習,並通過實踐編碼範例進行學習。


  • 數據科學家與機器學習工程師 - 深入理解模型調整和特徵工程。


  • 軟體開發人員 - 將 Scikit-Learn 模型實現到實際應用中。


  • 商業分析師與人工智慧愛好者 - 探索機器學習模型如何推動數據驅動的決策。


為什麼選擇這本書?


  • 逐步學習 - 實用範例和程式碼片段引導您理解每個概念。


  • 真實案例研究 - 將機器學習應用於真實數據集和項目。


  • 實踐導向 - 通過互動練習和 Python 實現進行學習。


  • 行業最佳實踐 - 避免常見陷阱,並優化您的機器學習模型以提高準確性和效率。


  • 從零開始的人工智慧系列的一部分 - 從初學者到人工智慧精通的結構化學習路徑。


今天就開始您的機器學習之旅!

無論您是第一次探索機器學習,還是希望提升您的技能,掌握 Scikit-Learn 提供了您成功所需的工具、技術和知識。

在您的人工智慧旅程中邁出下一步——今天就掌握 Scikit-Learn,構建強大的機器學習模型!