Linear Algebra: Algorithms, Application, and Techniques, 3/e (Paperback)
暫譯: 線性代數:演算法、應用與技術,第3版(平裝本)

Richard Bronson , Gabriel B. Costa , John T. Saccoman

買這商品的人也買了...

商品描述

<內容簡介>

Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs
Provides a balanced approach to computation and theory by offering computational algorithms for finding eigenvalues and eigenvectors 
Offers excellent exercise sets, ranging from drill to theoretical/challeging along with useful and interesting applications not found in other introductory linear algebra texts

Editorial Reviews
"The quality of the exercises is better than that of Anton. Bronson's exercises seem more original and less trivial. While he does have routine drill problems his non-routine problems require the student to either extend the student's knowledge base or fill in a portion of a proof."--Renee Britt, Louisiana State University
"I appreciate the slow increase in the progression of difficulty with proofs... I regard the exposition as superior. Prof. Bronson's text is the best example I've ever seen of motivating definitions in linear algebra, right from the very first page... Bronson incorporates the application first, thus motivating the definition, going from concrete to abstract, instead of the reverse."--Michael Ecker, The Pennsylvania State University

 

<章節目錄>

1. MATRICES
2. VECTOR SPACES
3. LINEAR TRANSFORMATIONS
4. EIGENVALUES, EIGENVECTORS, AND DIFFERENTIAL EQUATIONS
5. APPLICAIONS OF EIGENVALUES
6. EUCLIDEAN INNER PRODUCT
APPENDIX A: JORDAN CANONICAL FORMS
APPENDIX B: MARKOV CHAINS
APPENDIX C: MORE ON SPANNING TREES OF GRAPHS
APPENDIX D: TECHNOLOGY
APPENDIX E: MATHEMATICAL INDUCTION
ANSWERS AND HINTS TO SELECTED PROBLEMS

 

商品描述(中文翻譯)

內容簡介
• 介紹演繹推理,幫助讀者發展數學證明的能力
• 提供計算與理論的平衡方法,通過提供計算算法來尋找特徵值和特徵向量
• 提供優秀的練習題集,範圍從基本練習到理論/挑戰性題目,並包含其他入門線性代數書籍中未見的有用且有趣的應用

編輯評價
「練習題的質量優於 Anton。Bronson 的練習題似乎更具原創性且不那麼平凡。雖然他確實有常規的練習題,但他的非常規問題要求學生擴展知識基礎或填補證明的一部分。」--Renee Britt,路易斯安那州立大學
「我欣賞證明難度逐漸增加的過程……我認為這本書的闡述優於其他書籍。Bronson 教授的文本是我見過的最好的線性代數定義動機示例,從第一頁開始……Bronson 首先融入應用,從而激發定義的動機,從具體到抽象,而不是反過來。」--Michael Ecker,賓夕法尼亞州立大學

章節目錄
1. 矩陣
2. 向量空間
3. 線性變換
4. 特徵值、特徵向量與微分方程
5. 特徵值的應用
6. 歐幾里得內積
附錄 A: 喬丹標準型
附錄 B: 馬可夫鏈
附錄 C: 圖的生成樹更多內容
附錄 D: 技術
附錄 E: 數學歸納法
選定問題的答案與提示