The First Discriminant Theory of Linearly Separable Data: From Exams and Medical Diagnoses with Misclassifications to 169 Microarrays for Cancer Gene

Shinmura, Shuichi

  • 出版商: Springer
  • 出版日期: 2024-04-13
  • 售價: $7,010
  • 貴賓價: 9.5$6,660
  • 語言: 英文
  • 頁數: 347
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9819994195
  • ISBN-13: 9789819994199
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book deals with the first discriminant theory of linearly separable data (LSD), Theory3, based on the four ordinary LSD of Theory1 and 169 microarrays (LSD) of Theory2. Furthermore, you can quickly analyze the medical data with the misclassified patients which is the true purpose of diagnoses. Author developed RIP (Optimal-linear discriminant function finding the combinatorial optimal solution) as Theory1 in decades ago, that found the minimum misclassifications. RIP discriminated 63 (=26-1) models of Swiss banknote (200*6) and found the minimum LSD: basic gene set (BGS).

In Theory2, RIP discriminated Shipp microarray (77*7129) which was LSD and had only 32 nonzero coefficients (first Small Matryoshka; SM1). Because RIP discriminated another 7,097 genes and found SM2, the author developed the Matryoshka feature selection Method 2 (Program 3), that splits microarray into many SMs. Program4 can split microarray into many BGSs. Then, the wide column LSD (Revolution-0), such as microarray (n

Theory3 shows the surprising results of six ordinary data re-analyzed by Theory1 and Theory2 knowledge. Essence of Theory3 is described by using cephalopelvic disproportion (CPD) data. RIP discriminates CPD data (240*19) and finds two misclassifications unique for cesarean and natural-born groups. CPD238 omitting two patients becomes LSD, which is the first case selection method. Program4 finds BGS (14 vars.) the only variable selection method for Theory3. 32 (=25) models, including BGS, become LSD among (219-1) models. Because Program2 confirms BGS has the minimum average error rate, BGS is the most compact and best model satisfying Occam's Razor.

With this book, physicians obtain complete diagnostic results for disease, and engineers can become a true data scientist, by obtaining integral knowledge of statistics and mathematical programming with simple programs.

商品描述(中文翻譯)

本書探討了關於線性可分數據(LSD)的第一個判別理論,即基於Theory1的四個普通LSD和Theory2的169個微陣列(LSD)的Theory3。此外,您可以通過分類錯誤的患者快速分析醫學數據,這是診斷的真正目的。作者在幾十年前開發了RIP(最優線性判別函數找到組合最優解),作為Theory1,它找到了最小的分類錯誤。RIP對瑞士銀行票據(200 * 6)進行了63(= 2^6-1)種模型的區分,並找到了最小的LSD:基本基因組(BGS)。

在Theory2中,RIP對Shipp微陣列(77 * 7129)進行了區分,該微陣列是LSD,只有32個非零係數(第一個小俄羅斯套娃;SM1)。由於RIP區分了另外7,097個基因並找到了SM2,作者開發了Matryoshka特徵選擇方法2(Program 3),將微陣列分成多個SM。Program4可以將微陣列分成多個BGS。然後,廣列LSD(Revolution-0),例如微陣列(n

Theory3通過Theory1和Theory2的知識重新分析了六個普通數據的令人驚訝的結果。Theory3的本質是通過使用頭盆不稱(CPD)數據來描述的。RIP區分CPD數據(240 * 19)並找到了兩個僅適用於剖腹產和自然分娩組的分類錯誤。省略兩個患者的CPD238成為LSD,這是第一種案例選擇方法。Program4找到了BGS(14個變量),這是Theory3的唯一變量選擇方法。在(2^19-1)個模型中,包括BGS在內的32(= 2^5)個模型成為LSD。由於Program2確認BGS具有最小的平均錯誤率,BGS是最緊湊且滿足奧卡姆剃刀原則的最佳模型。

通過本書,醫生可以獲得完整的疾病診斷結果,工程師可以成為真正的數據科學家,通過獲得統計和數學編程的整體知識以及簡單的程序。

作者簡介

Shuichi Shinmura is Emeritus Professor in Seikei University, Tokyo. His publication includes "High-dimensional Microarray Data Analysis: Cancer Gene Diagnosis and Malignancy Indexes by Microarray" (Springer Nature 2019) and "New Theory of Discriminant Analysis After R. Fisher: Advanced Research by the Feature Selection Method for Microarray Data" (Springer 2017).

作者簡介(中文翻譯)

信村修一是東京成蹊大學的名譽教授。他的著作包括《高維度微陣列數據分析:利用微陣列進行癌症基因診斷和惡性指數》(Springer Nature 2019)和《R. Fisher之後的判別分析新理論:利用特徵選擇方法進行微陣列數據的高級研究》(Springer 2017)。