Introduction to Stochastic Processes
暫譯: 隨機過程導論
Mu-Fa Chen, Yong-Hua Mao
- 出版商: World Scientific Pub
- 出版日期: 2021-06-03
- 售價: $2,650
- 貴賓價: 9.5 折 $2,518
- 語言: 英文
- 頁數: 280
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9814740306
- ISBN-13: 9789814740302
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$600$570 -
$3,500$3,325
相關主題
商品描述
The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts - Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.
In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.
In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.
This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.
商品描述(中文翻譯)
本書的目標是以相當簡潔的方式介紹隨機過程的要素,並呈現兩個最重要的部分——馬可夫鏈(Markov chains)和隨機分析(stochastic analysis)。讀者將直接進入主要主題的核心內容。進一步的細節和附加材料則留在一個包含豐富練習的部分,以供進一步閱讀和學習。
在馬可夫鏈的部分,重點放在遍歷性(ergodicity)上。透過最小非負解法,我們處理重返性(recurrence)和各種類型的遍歷性。這是逐步進行的,從有限狀態空間到可數狀態空間,從離散時間到連續時間。證明的方法採用現代技術,例如耦合(coupling)和對偶性(duality)方法。一些非常新的結果也被納入,例如光譜間隙(spectral gap)的估計。第一部分的結構和證明與其他現有的馬可夫鏈教科書相當不同。
在隨機分析的部分,我們涵蓋了鞅理論(martingale theory)和布朗運動(Brownian motions)、隨機積分(stochastic integral)和隨機微分方程(stochastic differential equations),重點放在一維上,以及基於半鞅(semimartingales)的多維隨機積分和隨機方程。我們在這裡介紹三個重要主題:費曼-卡克公式(Feynman-Kac formula)、隨機時間變換(random time transform)和吉爾薩諾夫變換(Girsanov transform)。作為古典數學中概率理論的一個重要應用,我們還處理了著名的布倫-明科夫不等式(Brunn-Minkowski inequality)在凸幾何中的應用。
本書還特別介紹了在不同領域中使用的現代概率理論,例如馬可夫鏈蒙地卡羅(MCMC),甚至是確定性領域:凸幾何和數論。它為學生提供了一個新的直接路徑,從古典馬可夫鏈進入現代隨機分析。