Deep Learning for Hyperspectral Image Analysis and Classification
暫譯: 深度學習在高光譜影像分析與分類中的應用
Tao, Linmi, Mughees, Atif
- 出版商: Springer
- 出版日期: 2022-02-22
- 售價: $8,090
- 貴賓價: 9.5 折 $7,686
- 語言: 英文
- 頁數: 220
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9813344229
- ISBN-13: 9789813344228
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.
This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
商品描述(中文翻譯)
本書專注於基於深度學習的方法來分析高光譜影像(HSI)。提出了一種無監督的光譜-空間自適應帶噪聲因子模型,用於HSI噪聲檢測和帶類別化。這種特徵化帶的方式以及HSI的噪聲估計將顯著有助於後續的遙感技術。
本書從兩個方面進行發展:一方面,旨在為希望了解高光譜獲取技術如何與深度學習架構結合以解決不同應用領域特定任務的專業人士提供最新的概覽;另一方面,作者希望針對機器學習和計算機視覺專家,從多學科的角度展示深度學習技術如何應用於高光譜數據。本書的原創貢獻在於這兩種觀點的存在,以及深度學習在遙感應用領域的納入,並突顯了一些與觀察到的發展趨勢相關的潛力和關鍵問題。