Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set: Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (Volume 1)
暫譯: 植被的高光譜遙感技術(第二版,四卷套裝):基礎知識、感測系統、光譜庫與植被數據挖掘(第一卷)

  • 出版商: CRC
  • 出版日期: 2018-12-11
  • 售價: $6,500
  • 貴賓價: 9.5$6,175
  • 語言: 英文
  • 頁數: 489
  • 裝訂: Hardcover
  • ISBN: 1138058548
  • ISBN-13: 9781138058545
  • 相關分類: 感測器 SensorData-mining
  • 海外代購書籍(需單獨結帳)

商品描述

Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation.

 

Volume I, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation introduces the fundamentals of hyperspectral or imaging spectroscopy data, including hyperspectral data processes, sensor systems, spectral libraries, and data mining and analysis, covering both the strengths and limitations of these topics. This book also presents and discusses hyperspectral narrowband data acquired in numerous unique spectral bands in the entire length of the spectrum from various ground-based, airborne, and spaceborne platforms. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume I through the editors’ perspective.

 

Key Features of Volume I:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Provides the fundamentals of hyperspectral remote sensing used in agricultural crops and vegetation studies.
  • Discusses the latest advances in hyperspectral remote sensing of ecosystems and croplands.
  • Develops online hyperspectral libraries, proximal sensing and phenotyping for understanding, modeling, mapping, and monitoring crop and vegetation traits.
  • Implements reflectance spectroscopy of soils and vegetation.
  • Enumerates hyperspectral data mining and data processing methods, approaches, and machine learning algorithms.
  • Explores methods and approaches for data mining and overcoming data redundancy;
  • Highlights the advanced methods for hyperspectral data processing steps by developing or implementing appropriate algorithms and coding the same for processing on a cloud computing platform like the Google Earth Engine.
  • Integrates hyperspectral with other data, such as the LiDAR data, in the study of vegetation.
  • Includes best global expertise on hyperspectral remote sensing of agriculture, crop water use, plant species detection, crop productivity and water productivity mapping, and modeling.

商品描述(中文翻譯)

由全球領先的專家撰寫,包括該領域的先驅,第二版的《植物的高光譜遙感》四卷本回顧了現有的尖端知識,突顯了不同領域的進展,並提供了在農作物和自然植被研究及管理中適當使用高光譜數據的指導。

第一卷,**《基本原理、感測系統、光譜庫及植物數據挖掘》**介紹了高光譜或成像光譜數據的基本原理,包括高光譜數據處理、感測系統、光譜庫以及數據挖掘和分析,涵蓋了這些主題的優勢和限制。本書還展示並討論了從各種地面、空中和太空平台獲得的在整個光譜範圍內的多個獨特光譜帶中獲得的高光譜窄帶數據。結尾章節通過編輯的視角為讀者提供了有關第一卷重點和精髓的有用指導。

第一卷的主要特點:

- 提供用於農作物和植被研究的高光譜遙感基本原理。
- 討論生態系統和農田高光譜遙感的最新進展。
- 開發在線高光譜庫、近端感測和表型技術,以理解、建模、繪製和監測作物和植被特徵。
- 實施土壤和植被的反射光譜學。
- 列舉高光譜數據挖掘和數據處理方法、途徑及機器學習算法。
- 探索數據挖掘和克服數據冗餘的方法和途徑。
- 突出高光譜數據處理步驟的先進方法,通過開發或實施適當的算法並在如 Google Earth Engine 的雲計算平台上進行處理。
- 在植被研究中將高光譜數據與其他數據(如 LiDAR 數據)整合。
- 包含全球在農業、高光譜遙感、水分利用、植物物種檢測、作物生產力和水分生產力繪製及建模方面的最佳專業知識。