Network Data Mining and Analysis (East China Normal University Scientific Reports)
暫譯: 網路數據挖掘與分析(華東師範大學科學報告)
Ming Gao, Ee-Peng Lim, David Lo
- 出版商: World Scientific Pub
- 出版日期: 2018-11-20
- 售價: $4,020
- 貴賓價: 9.5 折 $3,819
- 語言: 英文
- 頁數: 185
- 裝訂: Hardcover
- ISBN: 9813274956
- ISBN-13: 9789813274952
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
Online social networking sites like Facebook, LinkedIn, and Twitter, offer millions of members the opportunity to befriend one another, send messages to each other, and post content on the site -- actions which generate mind-boggling amounts of data every day.
To make sense of the massive data from these sites, we resort to social media mining to answer questions like the following:
- What are social communities in bipartite graphs and signed graphs?
- How robust are the networks? How can we apply the robustness of networks?
- How can we find identical social users across heterogeneous social networks?
Social media shatters the boundaries between the real world and the virtual world. We can now integrate social theories with computational methods to study how individuals interact with each other and how social communities form in bipartite and signed networks. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user generated content with rich social relations. The study and development of these new techniques are under the purview of social media mining, an emerging discipline under the umbrella of data mining. Social Media Mining is the process of representing, analyzing, and extracting actionable patterns from social media data.
商品描述(中文翻譯)
在線社交網絡網站如 Facebook、LinkedIn 和 Twitter,為數百萬會員提供了互相交友、發送消息和在網站上發布內容的機會——這些行為每天產生驚人的數據量。
為了理解來自這些網站的龐大數據,我們依賴社交媒體挖掘來回答以下問題:
- 在二部圖和帶符號圖中,社交社群是什麼?
- 網絡的穩健性如何?我們如何應用網絡的穩健性?
- 我們如何在異質社交網絡中找到相同的社交用戶?
社交媒體打破了現實世界與虛擬世界之間的界限。我們現在可以將社會理論與計算方法結合,研究個體之間的互動以及社交社群在二部和帶符號網絡中的形成。社交媒體數據的獨特性要求創新的數據挖掘技術,這些技術能有效處理具有豐富社交關係的用戶生成內容。這些新技術的研究和開發屬於社交媒體挖掘的範疇,這是一個在數據挖掘範疇下新興的學科。社交媒體挖掘是從社交媒體數據中表示、分析和提取可行模式的過程。