Social Semantic Web Mining (Synthesis Lectures on the Semantic Web, Theory and Technology)
暫譯: 社會語義網路挖掘(語義網路綜合講座:理論與技術)

Tope Omitola, Sebastián A. Ríos, John G. Breslin

  • 出版商: Morgan & Claypool
  • 出版日期: 2015-01-01
  • 售價: $2,250
  • 貴賓價: 9.5$2,138
  • 語言: 英文
  • 頁數: 154
  • 裝訂: Paperback
  • ISBN: 1627053980
  • ISBN-13: 9781627053983
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The past ten years have seen a rapid growth in the numbers of people signing up to use Web-based social networks (hundreds of millions of new members are now joining the main services each year) with a large amount of content being shared on these networks (tens of billions of content items are shared each month). With this growth in usage and data being generated, there are many opportunities to discover the knowledge that is often inherent but somewhat hidden in these networks. Web mining techniques are being used to derive this hidden knowledge. In addition, the Semantic Web, including the Linked Data initiative to connect previously disconnected datasets, is making it possible to connect data from across various social spaces through common representations and agreed upon terms for people, content items, etc. In this book, we detail some current research being carried out to semantically represent the implicit and explicit structures on the Social Web, along with the techniques being used to elicit relevant knowledge from these structures, and we present the mechanisms that can be used to intelligently mesh these semantic representations with intelligent knowledge discovery processes. We begin this book with an overview of the origins of the Web, and then show how web intelligence can be derived from a combination of web and Social Web mining. We give an overview of the Social and Semantic Webs, followed by a description of the combined Social Semantic Web (along with some of the possibilities it affords), and the various semantic representation formats for the data created in social networks and on social media sites. Provenance and provenance mining is an important aspect here, especially when data is combined from multiple services. We will expand on the subject of provenance and especially its importance in relation to social data. We will describe extensions to social semantic vocabularies specifically designed for community mining purposes (SIOCM). In the last three chapters, we describe how the combination of web intelligence and social semantic data can be used to derive knowledge from the Social Web, starting at the community level (macro), and then moving through group mining (meso) to user profile mining (micro).

商品描述(中文翻譯)

過去十年中,使用基於網路的社交網絡的人數迅速增長(每年有數億新會員加入主要服務),在這些網絡上分享了大量內容(每月分享的內容項目達到數百億)。隨著使用量和數據生成的增長,發現這些網絡中通常隱含但又有些隱藏的知識的機會也隨之增加。網路挖掘技術被用來提取這些隱藏的知識。此外,語義網(Semantic Web),包括連結數據(Linked Data)倡議,旨在連接先前不相連的數據集,使得通過共同的表示和約定的術語(如人員、內容項目等)來連接來自各種社交空間的數據成為可能。在本書中,我們詳細介紹了一些當前正在進行的研究,這些研究旨在語義化地表示社交網絡上的隱含和顯性結構,以及用於從這些結構中引出相關知識的技術,並介紹可以用來智能地將這些語義表示與智能知識發現過程相結合的機制。我們以網路的起源概述開始本書,然後展示如何從網路和社交網路挖掘的結合中推導出網路智能。我們概述了社交網絡和語義網,接著描述了結合的社交語義網(Social Semantic Web)及其所提供的一些可能性,以及在社交網絡和社交媒體網站上創建的數據的各種語義表示格式。來源(Provenance)和來源挖掘(provenance mining)在這裡是一個重要的方面,特別是當數據來自多個服務時。我們將擴展來源的主題,特別是它在社交數據中的重要性。我們將描述專門為社區挖掘目的設計的社交語義詞彙的擴展(SIOCM)。在最後三章中,我們將描述如何利用網路智能和社交語義數據的結合來從社交網絡中推導知識,從社區層級(宏觀)開始,然後通過群組挖掘(中觀)到用戶檔案挖掘(微觀)。

最後瀏覽商品 (20)