KERNELS FOR STRUCTURED DATA
暫譯: 結構化數據的核函數

Thomas Gartner

  • 出版商: World Scientific Pub
  • 出版日期: 2008-12-01
  • 售價: $3,920
  • 貴賓價: 9.5$3,724
  • 語言: 英文
  • 頁數: 197
  • 裝訂: Hardcover
  • ISBN: 9812814558
  • ISBN-13: 9789812814555
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.

Contents: Why Kernels for Structured Data?; Kernel Methods in a Nutshell; Kernell Design; Basic Term Kernels; Graph Kernels.

商品描述(中文翻譯)

本書對機器學習的一個重要領域提供了獨特的處理方式,並回答了如何將核方法應用於結構化數據的問題。核方法是一類最先進的學習算法,在多個應用領域中展現了優異的學習結果。最初,核方法是針對可以輕易嵌入歐幾里得向量空間的數據而開發的。然而,許多現實世界中的數據並不具備這一特性,而是本質上具有結構性。書中經常提到的一個例子是由原子和鍵形成的分子的(2D)圖結構。本書引導讀者從核方法的基本概念到結構化數據的高級算法和核設計。因此,對於尋求進入該領域的讀者以及有經驗的研究者來說,本書都非常有用。

內容:為什麼對結構化數據使用核?;核方法概述;核設計;基本術語核;圖核。