Heterogeneous Graph Representation Learning and Applications
暫譯: 異質圖表示學習與應用

Shi, Chuan, Wang, Xiao, Yu, Philip S.

相關主題

商品描述

1. Introduction

1.1 Basic concepts and definitions

1.2 Graph representation

1.3 Heterogeneous graph representation and challenges

1.4 Organization of the book

2. The State-of-the-art of Heterogeneous Graph Representation

2.1 Method taxonomy

2.1.1 Structure-preserved representation

2.1.2 Attribute-assisted representation

2.1.3 Dynamic representation

2.1.4 Application-oriented representation

2.2 Technique summary

2.2.1 Shallow model

2.2.2 Deep model

2.3 Open sources

Part One: Techniques

3. Structure-preserved Heterogeneous Graph Representation

3.1 Meta-path based random walk

3.2 Meta-path based decomposition

3.3 Relation structure awareness

3.4 Network schema preservation

4. Attribute-assisted Heterogeneous Graph Representation

4.1 Heterogeneous graph attention network

4.2 Heterogeneous graph structure learning

5. Dynamic Heterogeneous Graph Representation

5.1 Incremental Learning

5.2 Temporal Interaction

5.3 Sequence Information

6. Supplementary of Heterogeneous Graph Representation

6.1 Adversarial Learning

6.2 Importance Sampling

6.3 Hyperbolic Representation

Part Two: Applications

7. Heterogeneous Graph Representation for Recommendation

7.1 Top-N Recommendation

7.2 Cold-start Recommendation

7.3 Author Set Recommendation

8. Heterogeneous Graph Representation for Text Mining

8.1 Short Text Classification

8.2 News Recommendation with Preference Disentanglement

8.3 News recommendation with long/short-term interest modeling

9. Heterogeneous Graph Representation for Industry Application

9.1 Cash-out User Detection

9.2 Intent Recommendation

9.3 Share Recommendation

9.4 Friend-Enhanced Recommendation

10. Future Research Directions

11. Conclusion

商品描述(中文翻譯)

1. 介紹
1.1 基本概念與定義
1.2 圖形表示
1.3 異質圖形表示及其挑戰
1.4 本書組織

2. 異質圖形表示的最新技術
2.1 方法分類
2.1.1 結構保留表示
2.1.2 屬性輔助表示
2.1.3 動態表示
2.1.4 應用導向表示
2.2 技術總結
2.2.1 淺層模型
2.2.2 深層模型
2.3 開源資源

**第一部分:技術**
3. 結構保留的**異質圖**表示
3.1 基於元路徑的隨機漫遊
3.2 基於元路徑的分解
3.3 關係結構感知
3.4 網路架構保留

4. 屬性輔助的**異質圖**表示
4.1 **異質圖**注意力網路
4.2 **異質圖**結構學習

5. 動態**異質圖**表示
5.1 增量學習
5.2 時間互動
5.3 序列資訊

6. **異質圖**表示的補充
6.1 對抗學習
6.2 重要性抽樣
6.3 超曲面表示

**第二部分:應用**

7. 用於推薦的**異質圖**表示
7.1 Top-N 推薦
7.2 冷啟動推薦
7.3 作者集推薦

8. 用於文本挖掘的**異質圖**表示
8.1 短文本分類
8.2 偏好解耦的新聞推薦
8.3 具有長期/短期興趣建模的新聞推薦

9. 用於產業應用的**異質圖**表示
9.1 提現用戶檢測
9.2 意圖推薦
9.3 分享推薦
9.4 朋友增強推薦

10. 未來研究方向
11. 結論