Brakke's Mean Curvature Flow: An Introduction
暫譯: Brakke 的平均曲率流:入門指南
Tonegawa, Yoshihiro
- 出版商: Springer
- 出版日期: 2019-04-17
- 售價: $3,370
- 貴賓價: 9.5 折 $3,202
- 語言: 英文
- 頁數: 100
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9811370745
- ISBN-13: 9789811370748
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 k n). The family is the mean curvature flow if the velocity of motion of surfaces is given by the mean curvature at each point and time. It is one of the simplest and most important geometric evolution problems with a strong connection to minimal surface theory. In fact, equilibrium of mean curvature flow corresponds precisely to minimal surface. Brakke's mean curvature flow was first introduced in 1978 as a mathematical model describing the motion of grain boundaries in an annealing pure metal. The grain boundaries move by the mean curvature flow while retaining singularities such as triple junction points. By using a notion of generalized surface called a varifold from geometric measure theory which allows the presence of singularities, Brakke successfully gave it a definition and presented its existence and regularity theories. Recently, the author provided a complete proof of Brakke's existence and regularity theorems, which form the content of the latter half of the book. The regularity theorem is also a natural generalization of Allard's regularity theorem, which is a fundamental regularity result for minimal surfaces and for surfaces with bounded mean curvature. By carefully presenting a minimal amount of mathematical tools, often only with intuitive explanation, this book serves as a good starting point for the study of this fascinating object as well as a comprehensive introduction to other important notions from geometric measure theory.
商品描述(中文翻譯)
本書解釋了 Brakke 的平均曲率流的概念及其存在性和正則性理論,而不假設讀者對幾何測度理論的熟悉程度。研究的重點是一族時間參數化的 k 維曲面,位於 n 維歐幾里得空間中 (1 ≤ k ≤ n)。如果曲面的運動速度由每個點和時間的平均曲率給出,則該族曲面即為平均曲率流。這是最簡單且最重要的幾何演化問題之一,與最小曲面理論有著密切的聯繫。事實上,平均曲率流的平衡恰好對應於最小曲面。Brakke 的平均曲率流於 1978 年首次被引入,作為描述純金屬退火過程中晶界運動的數學模型。晶界在保持如三重接點等奇異性的同時,通過平均曲率流進行運動。通過使用一種稱為 varifold 的廣義曲面概念,這一概念源自幾何測度理論,允許奇異性的存在,Brakke 成功地給出了其定義並提出了其存在性和正則性理論。最近,作者提供了 Brakke 存在性和正則性定理的完整證明,這些內容構成了本書後半部分的主題。正則性定理也是 Allard 正則性定理的自然推廣,後者是最小曲面及具有有界平均曲率的曲面的基本正則性結果。通過仔細呈現最少的數學工具,通常僅用直觀的解釋,本書成為研究這一迷人對象的良好起點,同時也是幾何測度理論中其他重要概念的全面介紹。