Backward Fuzzy Rule Interpolation
暫譯: 反向模糊規則插值
Shangzhu Jin, Qiang Shen, Jun Peng
- 出版商: Springer
- 出版日期: 2018-08-21
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 159
- 裝訂: Hardcover
- ISBN: 9811316538
- ISBN-13: 9789811316531
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support α-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology.
商品描述(中文翻譯)
本書主要介紹一種稱為反向模糊規則插值與外推(backward fuzzy rule interpolation and extrapolation, BFRI)的新方法。BFRI 允許從其他前提和結論中推斷或插值與結論直接相關的觀察結果。基於尺度和移動變換插值,這種方法支持插值和外推,涉及多個層次交織的模糊規則,每個規則都有多個前提。因此,它提供了一種擴展模糊規則插值和模糊推理應用的方法。本書處理一般情況,其中給定問題可能缺少多個前提值。提出了兩種技術,稱為參數方法和反饋方法,旨在對多個缺失前提值進行反向插值。此外,為了進一步增強 BFRI 的多功能性和潛力,反向模糊插值方法被擴展以支持基於 α-cut 的插值,通過為多維輸入空間(IMUL)採用模糊插值機制來實現。最後,從綜合應用分析的角度,提供了基於現實世界恐怖主義風險評估場景的實驗研究,以展示層次模糊規則插值方法的潛力和有效性。