The Numerical Jordan Form (數值喬丹形式)

Petkov, Petko H.

  • 出版商: World Scientific Pub
  • 出版日期: 2024-06-24
  • 售價: $7,400
  • 貴賓價: 9.5$7,030
  • 語言: 英文
  • 頁數: 656
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9811286442
  • ISBN-13: 9789811286445
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The Numerical Jordan Form is the first book dedicated to exploring the algorithmic and computational methods for determining the Jordan form of a matrix, as well as addressing the numerical difficulties in finding it. Unlike the 'pure' Jordan form, the numerical Jordan form preserves its structure under small perturbations of the matrix elements so that its determination presents a well-posed computational problem. If this structure is well conditioned, it can be determined reliably in the presence of uncertainties and rounding errors.This book addresses the form's application in solving some important problems such as the estimation of eigenvalue sensitivity and computing the matrix exponential. Special attention is paid to the Jordan-Schur form of a matrix which, the author suggests, is not exploited sufficiently in the area of matrix computations. Since the mathematical objects under consideration can be sensitive to changes in the elements of the given matrix, the book also investigates the perturbation analysis of eigenvalues and invariant subspaces. This study is supplemented by a collection over 100 M-files suitable for MATLAB in order to implement the state-of-the art algorithms presented in the book for reducing a square matrix into the numerical Jordan form.Researchers in the fields of numerical analysis and matrix computations and any scientists who utilise matrices in their work will find this book a useful resource, and it is also a suitable reference book for graduate and advance undergraduate courses in this subject area.

商品描述(中文翻譯)

《數值喬丹形式》是第一本專門探討計算方法和演算法以確定矩陣的喬丹形式的書籍,同時也解決了尋找該形式時的數值困難。與「純」喬丹形式不同,數值喬丹形式在矩陣元素的小擾動下保持其結構,因此其確定呈現出良好定義的計算問題。如果這種結構是良好條件的,則在存在不確定性和四捨五入誤差的情況下,可以可靠地確定。這本書探討了該形式在解決一些重要問題中的應用,例如特徵值靈敏度的估計和計算矩陣指數。特別關注的是矩陣的喬丹-舒爾形式,作者認為在矩陣計算領域中尚未充分利用。由於所考慮的數學對象可能對給定矩陣元素的變化敏感,該書還研究了特徵值和不變子空間的擾動分析。這項研究附有超過100個適用於MATLAB的M檔案,以實現書中提出的最先進演算法,將方陣簡化為數值喬丹形式。數值分析和矩陣計算領域的研究人員,以及任何在工作中使用矩陣的科學家,都會發現這本書是有用的資源,並且它也是該學科研究生和高級本科課程的合適參考書籍。