Numsense! Data Science for the Layman: No Math Added
Annalyn Ng, Kenneth Soo
- 出版商: ***
- 出版日期: 2017-03-24
- 定價: $1,220
- 售價: 9.0 折 $1,098
- 語言: 英文
- 頁數: 146
- 裝訂: Paperback
- ISBN: 9811110689
- ISBN-13: 9789811110689
-
相關分類:
Data Science
-
相關翻譯:
文科生也看得懂的資料科學 (繁中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$350$315 -
$620$489 -
$990$891 -
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$640$544 -
$650$585 -
$490$417 -
$620$490 -
$980$833 -
$780$616 -
$352人人都是資料分析師:Tableau 應用實戰
-
$3,140$2,983 -
$680$578 -
$500$395 -
$520$411 -
$590$460 -
$390$332 -
$900$711 -
$958深度學習
-
$580$458 -
$420$332 -
$480$408 -
$780$663 -
$480$360 -
$380$296
相關主題
商品描述
Used in Stanford's CS102 Big Data (Spring 2017) course.
Want to get started on data science?
Our promise: no math added.
This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly.
Popular concepts covered include:
- A/B Testing
- Anomaly Detection
- Association Rules
- Clustering
- Decision Trees and Random Forests
- Regression Analysis
- Social Network Analysis
- Neural Networks
Features:
- Intuitive explanations and visuals
- Real-world applications to illustrate each algorithm
- Point summaries at the end of each chapter
- Reference sheets comparing the pros and cons of algorithms
- Glossary list of commonly-used terms
With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
商品描述(中文翻譯)
這本書是斯坦福大學CS102大數據(2017年春季)課程中使用的教材。
想要開始學習數據科學嗎?我們承諾:不需要數學。
這本書以通俗易懂的方式撰寫,作為數據科學及其算法的初級介紹。每個算法都有專門的章節來解釋其工作原理,並展示一個真實應用的例子。為了幫助您理解關鍵概念,我們使用直觀的解釋和大量的視覺材料,並且所有視覺材料都適合色盲人士。
涵蓋的熱門概念包括:
- A/B測試
- 異常檢測
- 關聯規則
- 聚類
- 決策樹和隨機森林
- 迴歸分析
- 社交網絡分析
- 神經網絡
特點:
- 直觀的解釋和視覺材料
- 用於說明每個算法的真實應用
- 每章結束時的要點摘要
- 比較算法優缺點的參考資料
- 常用術語詞彙表
通過這本書,我們希望讓您實際了解數據科學,以便您也能利用其優勢做出更好的決策。