Age-Structured Population Dynamics in Demography and Epidemiology
暫譯: 年齡結構人口動態:在人口學與流行病學中的應用
Inaba, Hisashi
- 出版商: Springer
- 出版日期: 2018-07-25
- 售價: $4,960
- 貴賓價: 9.5 折 $4,712
- 語言: 英文
- 頁數: 555
- 裝訂: Quality Paper - also called trade paper
- ISBN: 981109098X
- ISBN-13: 9789811090981
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.
商品描述(中文翻譯)
本書是第一本以現代年齡結構人口動力學嚴謹地制定基本人口模型,並擴展至研究現實世界人口問題的書籍。年齡結構是理解人口現象的關鍵因素,而人口學和流行病學中的基本概念若不透過數學公式化將無法理解;因此,本書為讀者提供了人類人口研究的堅實數學介紹。在本卷的第一部分,經典的人口模型如穩定人口模型及其線性擴展、密度依賴的非線性模型和配對形成模型,皆透過 McKendrick 偏微分方程進行公式化,並從動態系統的角度進行分析。在第二部分,使用非線性微分方程和更新方程來檢視在群體層面上傳播的傳染病數學模型。由於流行病可以被視為感染人口的非線性更新過程,本書將為人口學和流行病學提供一個自然的統一觀點。著名的流行病閾值原則是由基本繁殖數公式化的,這也是人口學中最重要的指標之一。作者在異質環境中發展了基本繁殖數的普遍理論。透過引入宿主年齡結構,流行病模型被發展成更現實的人口公式化,這對於解決現實世界中迫切的流行病控制問題是至關重要的。
作者簡介
Hisashi Inaba, Professor, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japaninaba@ms.u-tokyo.ac.jp
作者簡介(中文翻譯)
稲葉久志,東京大學數學科學研究所教授,地址:日本東京都目黑區駒場3-8-1,郵遞區號153-8914,電子郵件:inaba@ms.u-tokyo.ac.jp