Advances in Machine Learning and Data Science: Recent Achievements and Research Directives (Advances in Intelligent Systems and Computing)
暫譯: 機器學習與數據科學的進展:近期成就與研究指導 (智能系統與計算進展)
- 出版商: Springer
- 出版日期: 2018-05-17
- 售價: $8,620
- 貴賓價: 9.5 折 $8,189
- 語言: 英文
- 頁數: 392
- 裝訂: Paperback
- ISBN: 9811085684
- ISBN-13: 9789811085680
-
相關分類:
Machine Learning、Data Science
海外代購書籍(需單獨結帳)
商品描述
The Volume of “Advances in Machine Learning and Data Science - Recent Achievements and Research Directives” constitutes the proceedings of First International Conference on Latest Advances in Machine Learning and Data Science (LAMDA 2017). The 37 regular papers presented in this volume were carefully reviewed and selected from 123 submissions.
These days we find many computer programs that exhibit various useful learning methods and commercial applications. Goal of machine learning is to develop computer programs that can learn from experience. Machine learning involves knowledge from various disciplines like, statistics, information theory, artificial intelligence, computational complexity, cognitive science and biology. For problems like handwriting recognition, algorithms that are based on machine learning out perform all other approaches. Both machine learning and data science are interrelated. Data science is an umbrella term to be used for techniques that clean data and extract useful information from data. In field of data science, machine learning algorithms are used frequently to identify valuable knowledge from commercial databases containing records of different industries, financial transactions, medical records, etc.
The main objective of this book is to provide an overview on latest advancements in the field of machine learning and data science, with solutions to problems in field of image, video, data and graph processing, pattern recognition, data structuring, data clustering, pattern mining, association rule based approaches, feature extraction techniques, neural networks, bio inspired learning and various machine learning algorithms.
商品描述(中文翻譯)
《機器學習與數據科學的進展 - 最近的成就與研究指導》一書的內容是第一屆國際機器學習與數據科學最新進展會議(LAMDA 2017)的會議論文集。本卷中發表的37篇常規論文是從123篇提交的論文中經過仔細審核和選擇出來的。
如今,我們發現許多計算機程序展示了各種有用的學習方法和商業應用。機器學習的目標是開發能夠從經驗中學習的計算機程序。機器學習涉及來自多個學科的知識,如統計學、信息理論、人工智慧、計算複雜性、認知科學和生物學。對於手寫識別等問題,基於機器學習的算法表現優於所有其他方法。機器學習和數據科學是相互關聯的。數據科學是一個總稱,用於描述清理數據和從數據中提取有用信息的技術。在數據科學領域,機器學習算法經常用於從包含不同行業的記錄、金融交易、醫療記錄等的商業數據庫中識別有價值的知識。
本書的主要目的是提供有關機器學習和數據科學領域最新進展的概述,並針對圖像、視頻、數據和圖形處理、模式識別、數據結構化、數據聚類、模式挖掘、基於關聯規則的方法、特徵提取技術、神經網絡、生物啟發學習以及各種機器學習算法等領域的問題提供解決方案。