Mastering MLOps Architecture: From Code to Deployment: Manage the Production Cycle of Continual Learning ML Models with MLOps

Jhajj, Raman

  • 出版商: BPB Publications
  • 出版日期: 2024-01-14
  • 售價: $1,670
  • 貴賓價: 9.5$1,587
  • 語言: 英文
  • 頁數: 226
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9355519494
  • ISBN-13: 9789355519498
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems. By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth.

商品描述(中文翻譯)

MLOps(機器學習運營)是DevOps、資料工程和機器學習的結合,對於提供高質量的機器學習結果至關重要,因為機器學習數據具有動態性。本書深入探討MLOps,涵蓋其核心概念、組件和架構,展示了MLOps如何促進強大且不斷改進的機器學習系統。通過涵蓋從數據到部署的端到端機器學習流程,本書幫助讀者實施MLOps工作流程。它討論了特徵工程、模型開發、A/B測試和金絲雀部署等技術。本書使讀者瞭解MLOps工具和基礎設施,用於模型追蹤、模型治理、元數據管理和流程編排等任務。深入介紹了監控和維護流程,以檢測模型退化情況。