MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations
暫譯: 使用 Red Hat OpenShift 的 MLOps:雲原生機器學習運營方法
Brigoli, Ross, Masood, Faisal
- 出版商: Packt Publishing
- 出版日期: 2024-01-31
- 售價: $1,700
- 貴賓價: 9.5 折 $1,615
- 語言: 英文
- 頁數: 238
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805120239
- ISBN-13: 9781805120230
-
相關分類:
Linux、Machine Learning
立即出貨 (庫存=1)
商品描述
Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflows
Key Features:
- Grasp MLOps and machine learning project lifecycle through concept introductions
- Get hands on with provisioning and configuring Red Hat OpenShift Data Science
- Explore model training, deployment, and MLOps pipeline building with step-by-step instructions
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you'll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you'll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you'll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you'll be able to implement MLOps workflows on the OpenShift platform proficiently.
What You Will Learn:
- Build a solid foundation in key MLOps concepts and best practices
- Explore MLOps workflows, covering model development and training
- Implement complete MLOps workflows on the Red Hat OpenShift platform
- Build MLOps pipelines for automating model training and deployments
- Discover model serving approaches using Seldon and Intel OpenVino
- Get to grips with operating data science and machine learning workloads in OpenShift
Who this book is for:
This book is for MLOps and DevOps engineers, data architects, and data scientists interested in learning the OpenShift platform. Particularly, developers who want to learn MLOps and its components will find this book useful. Whether you're a machine learning engineer or software developer, this book serves as an essential guide to building scalable and efficient machine learning workflows on the OpenShift platform.
商品描述(中文翻譯)
使用 Red Hat OpenShift Data Science 建立和管理 MLOps 管道的實用指南,釋放機器學習工作流程的力量
主要特點:
- 通過概念介紹掌握 MLOps 和機器學習專案生命周期
- 實際操作 Red Hat OpenShift Data Science 的配置和設置
- 通過逐步指導探索模型訓練、部署和 MLOps 管道的建立
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
《MLOps with OpenShift》提供了在動態的 OpenShift 平台上實施 MLOps 工作流程的實用見解。隨著全球各組織尋求利用機器學習運營的力量,本書為您的 MLOps 成功奠定基礎。從探索關鍵的 MLOps 概念開始,包括數據準備、模型訓練和部署,您將準備好釋放 OpenShift 的能力,並從容器、Pod、運算元等的入門開始。
在打下基礎後,您將被引導至 MLOps 工作流程,揭示流行機器學習框架在平台上訓練和測試模型的應用。
隨著您逐步深入各章,您將專注於開源數據科學和機器學習平台 Red Hat OpenShift Data Science 及其合作組件,如 Pachyderm 和 Intel OpenVino,以了解它們在建立和管理數據管道以及部署和監控機器學習模型中的角色。
擁有這些全面的知識,您將能夠熟練地在 OpenShift 平台上實施 MLOps 工作流程。
您將學到什麼:
- 建立關鍵 MLOps 概念和最佳實踐的堅實基礎
- 探索 MLOps 工作流程,涵蓋模型開發和訓練
- 在 Red Hat OpenShift 平台上實施完整的 MLOps 工作流程
- 建立 MLOps 管道以自動化模型訓練和部署
- 發現使用 Seldon 和 Intel OpenVino 的模型服務方法
- 掌握在 OpenShift 中運行數據科學和機器學習工作負載
本書適合誰:
本書適合對學習 OpenShift 平台感興趣的 MLOps 和 DevOps 工程師、數據架構師和數據科學家。特別是希望學習 MLOps 及其組件的開發人員將會發現本書非常有用。無論您是機器學習工程師還是軟體開發人員,本書都是在 OpenShift 平台上建立可擴展和高效的機器學習工作流程的必備指南。