Practical Deep Reinforcement Learning with Python: Concise Implementation of Algorithms, Simplified Maths, and Effective Use of TensorFlow and PyTorch
暫譯: 實用的深度強化學習與 Python:算法的簡明實現、簡化數學及有效使用 TensorFlow 和 PyTorch
Gridin, Ivan
- 出版商: Bpb Publications
- 出版日期: 2022-07-15
- 售價: $1,430
- 貴賓價: 9.5 折 $1,359
- 語言: 英文
- 頁數: 400
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9355512066
- ISBN-13: 9789355512062
-
相關分類:
Python、程式語言、DeepLearning、Reinforcement、TensorFlow、Algorithms-data-structures
立即出貨 (庫存=1)
相關主題
商品描述
Introducing Practical Smart Agents Development using Python, PyTorch, and TensorFlow
KEY FEATURES
● Exposure to well-known RL techniques, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical.
● Hands-on experience with TensorFlow and PyTorch on Reinforcement Learning projects.
● Everything is concise, up-to-date, and visually explained with simplified mathematics.
DESCRIPTION
Reinforcement learning is a fascinating branch of AI that differs from standard machine learning in several ways. Adaptation and learning in an unpredictable environment is the part of this project. There are numerous real-world applications for reinforcement learning these days, including medical, gambling, human imitation activity, and robotics.
This book introduces readers to reinforcement learning from a pragmatic point of view. The book does involve mathematics, but it does not attempt to overburden the reader, who is a beginner in the field of reinforcement learning.
The book brings a lot of innovative methods to the reader's attention in much practical learning, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical methods. While you understand these techniques in detail, the book also provides a real implementation of these methods and techniques using the power of TensorFlow and PyTorch. The book covers some enticing projects that show the power of reinforcement learning, and not to mention that everything is concise, up-to-date, and visually explained.
After finishing this book, the reader will have a thorough, intuitive understanding of modern reinforcement learning and its applications, which will tremendously aid them in delving into the interesting field of reinforcement learning.
WHAT YOU WILL LEARN
● Familiarize yourself with the fundamentals of Reinforcement Learning and Deep Reinforcement Learning.
● Make use of Python and Gym framework to model an external environment.
● Apply classical Q-learning, Monte Carlo, Policy Gradient, and Thompson sampling techniques.
● Explore TensorFlow and PyTorch to practice the fundamentals of deep reinforcement learning.
● Design a smart agent for a particular problem using a specific technique.
WHO THIS BOOK IS FOR
This book is for machine learning engineers, deep learning fanatics, AI software developers, data scientists, and other data professionals eager to learn and apply Reinforcement Learning to ongoing projects. No specialized knowledge of machine learning is necessary; however, proficiency in Python is desired.
商品描述(中文翻譯)
介紹使用 Python、PyTorch 和 TensorFlow 的實用智慧代理開發
主要特點
● 接觸知名的強化學習技術,包括蒙地卡羅(Monte-Carlo)、深度 Q 學習(Deep Q-Learning)、策略梯度(Policy Gradient)和演員-評論家(Actor-Critical)。
● 在強化學習專案中獲得 TensorFlow 和 PyTorch 的實作經驗。
● 所有內容簡潔、最新,並以簡化的數學方式進行視覺化解釋。
描述
強化學習是人工智慧的一個迷人分支,與標準機器學習在幾個方面有所不同。適應和學習於不可預測的環境是本專案的一部分。如今,強化學習有許多現實世界的應用,包括醫療、賭博、人類模仿活動和機器人技術。
本書從實用的角度介紹強化學習。雖然本書涉及數學,但不會讓初學者感到過於負擔。
本書向讀者介紹了許多創新的方法,包括蒙地卡羅、深度 Q 學習、策略梯度和演員-評論家方法。在詳細理解這些技術的同時,本書還提供了使用 TensorFlow 和 PyTorch 實現這些方法和技術的實際案例。本書涵蓋了一些引人入勝的專案,展示了強化學習的威力,更不用說所有內容都是簡潔、最新且以視覺化方式解釋的。
完成本書後,讀者將對現代強化學習及其應用有透徹且直觀的理解,這將大大幫助他們深入探索強化學習這一有趣的領域。
你將學到什麼
● 熟悉強化學習和深度強化學習的基本原理。
● 利用 Python 和 Gym 框架來建模外部環境。
● 應用經典的 Q 學習、蒙地卡羅、策略梯度和湯普森抽樣技術。
● 探索 TensorFlow 和 PyTorch,以實踐深度強化學習的基本原理。
● 使用特定技術為特定問題設計智慧代理。
本書適合誰
本書適合機器學習工程師、深度學習愛好者、人工智慧軟體開發人員、數據科學家及其他渴望學習並將強化學習應用於正在進行的專案的數據專業人士。不需要專門的機器學習知識,但希望具備 Python 的熟練程度。