Practical Deep Reinforcement Learning with Python: Concise Implementation of Algorithms, Simplified Maths, and Effective Use of TensorFlow and PyTorch
Gridin, Ivan
- 出版商: Bpb Publications
- 出版日期: 2022-07-15
- 售價: $1,430
- 貴賓價: 9.5 折 $1,359
- 語言: 英文
- 頁數: 400
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9355512066
- ISBN-13: 9789355512062
-
相關分類:
Python、程式語言、DeepLearning、Reinforcement、TensorFlow、Algorithms-data-structures
立即出貨 (庫存=1)
相關主題
商品描述
Introducing Practical Smart Agents Development using Python, PyTorch, and TensorFlow
KEY FEATURES
● Exposure to well-known RL techniques, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical.
● Hands-on experience with TensorFlow and PyTorch on Reinforcement Learning projects.
● Everything is concise, up-to-date, and visually explained with simplified mathematics.
DESCRIPTION
Reinforcement learning is a fascinating branch of AI that differs from standard machine learning in several ways. Adaptation and learning in an unpredictable environment is the part of this project. There are numerous real-world applications for reinforcement learning these days, including medical, gambling, human imitation activity, and robotics.
This book introduces readers to reinforcement learning from a pragmatic point of view. The book does involve mathematics, but it does not attempt to overburden the reader, who is a beginner in the field of reinforcement learning.
The book brings a lot of innovative methods to the reader's attention in much practical learning, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical methods. While you understand these techniques in detail, the book also provides a real implementation of these methods and techniques using the power of TensorFlow and PyTorch. The book covers some enticing projects that show the power of reinforcement learning, and not to mention that everything is concise, up-to-date, and visually explained.
After finishing this book, the reader will have a thorough, intuitive understanding of modern reinforcement learning and its applications, which will tremendously aid them in delving into the interesting field of reinforcement learning.
WHAT YOU WILL LEARN
● Familiarize yourself with the fundamentals of Reinforcement Learning and Deep Reinforcement Learning.
● Make use of Python and Gym framework to model an external environment.
● Apply classical Q-learning, Monte Carlo, Policy Gradient, and Thompson sampling techniques.
● Explore TensorFlow and PyTorch to practice the fundamentals of deep reinforcement learning.
● Design a smart agent for a particular problem using a specific technique.
WHO THIS BOOK IS FOR
This book is for machine learning engineers, deep learning fanatics, AI software developers, data scientists, and other data professionals eager to learn and apply Reinforcement Learning to ongoing projects. No specialized knowledge of machine learning is necessary; however, proficiency in Python is desired.
商品描述(中文翻譯)
介紹使用Python、PyTorch和TensorFlow開發實用智能代理的書籍
關鍵特點:
- 探索著名的強化學習技術,包括蒙特卡羅、深度Q學習、策略梯度和演員-評論者方法。
- 通過TensorFlow和PyTorch在強化學習項目中獲得實踐經驗。
- 以簡化的數學方式簡潔、最新和視覺化地解釋所有內容。
描述:
強化學習是人工智能的一個迷人分支,與標準機器學習有幾個不同之處。適應和學習在不可預測的環境中是這個項目的一部分。如今,強化學習在醫療、賭博、人類模仿活動和機器人等眾多實際應用中都有。
本書從實用的角度介紹了強化學習。書中涉及數學,但不會給初學者帶來過多負擔。
本書通過簡潔、最新和視覺化的方式向讀者介紹了許多創新方法,包括蒙特卡羅、深度Q學習、策略梯度和演員-評論者方法。在深入了解這些技術的同時,本書還使用TensorFlow和PyTorch的強大功能提供了這些方法和技術的實際實現。本書涵蓋了一些引人入勝的項目,展示了強化學習的威力,並且所有內容都簡潔、最新和視覺化解釋。
閱讀完本書後,讀者將對現代強化學習及其應用有全面、直觀的理解,這將極大地幫助他們深入研究這個有趣的領域。
你將學到什麼:
- 熟悉強化學習和深度強化學習的基礎知識。
- 使用Python和Gym框架建模外部環境。
- 應用傳統的Q學習、蒙特卡羅、策略梯度和湯普森抽樣技術。
- 探索TensorFlow和PyTorch以練習深度強化學習的基礎知識。
- 使用特定技術為特定問題設計智能代理。
適合對象:
本書適合機器學習工程師、深度學習愛好者、人工智能軟件開發人員、數據科學家和其他數據專業人士,他們渴望學習並應用強化學習到正在進行的項目中。不需要機器學習的專業知識,但需要熟練使用Python。