Mastering Computer Vision with PyTorch 2.0: Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and D
暫譯: 精通 PyTorch 2.0 的電腦視覺:探索、設計與構建尖端高效能電腦視覺解決方案

Siddiqui, M. Arshad

  • 出版商: Orange Education Pvt Ltd
  • 出版日期: 2025-01-17
  • 售價: $1,710
  • 貴賓價: 9.5$1,625
  • 語言: 英文
  • 頁數: 312
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9348107089
  • ISBN-13: 9789348107084
  • 相關分類: DeepLearningComputer Vision
  • 海外代購書籍(需單獨結帳)

商品描述

Unleashing the Power of Computer Vision with PyTorch 2.0.

Book Description
In an era where Computer Vision has rapidly transformed industries like healthcare and autonomous systems, PyTorch 2.0 has become the leading framework for high-performance AI solutions. [Mastering Computer Vision with PyTorch 2.0] bridges the gap between theory and application, guiding readers through PyTorch essentials while equipping them to solve real-world challenges.

Starting with PyTorch's evolution and unique features, the book introduces foundational concepts like tensors, computational graphs, and neural networks. It progresses to advanced topics such as Convolutional Neural Networks (CNNs), transfer learning, and data augmentation. Hands-on chapters focus on building models, optimizing performance, and visualizing architectures. Specialized areas include efficient training with PyTorch Lightning, deploying models on edge devices, and making models production-ready.

Explore cutting-edge applications, from object detection models like YOLO and Faster R-CNN to image classification architectures like ResNet and Inception. By the end, readers will be confident in implementing scalable AI solutions, staying ahead in this rapidly evolving field. Whether you're a student, AI enthusiast, or professional, this book empowers you to harness the power of PyTorch 2.0 for Computer Vision.

Table of Contents
1. Diving into PyTorch 2.0
2. PyTorch Basics
3. Transitioning from PyTorch 1.x to PyTorch 2.0
4. Venturing into Artificial Neural Networks
5. Diving Deep into Convolutional Neural Networks (CNNs)
6. Data Augmentation and Preprocessing for Vision Tasks
7. Exploring Transfer Learning with PyTorch
8. Advanced Image Classification Models
9. Object Detection Models
10. Tips and Tricks to Improve Model Performance
11. Efficient Training with PyTorch Lightning
12. Model Deployment and Production-Ready Considerations
Index

商品描述(中文翻譯)

**釋放 PyTorch 2.0 的電腦視覺力量**

**書籍描述**
在電腦視覺迅速改變醫療保健和自動化系統等行業的時代,PyTorch 2.0 已成為高效能 AI 解決方案的領先框架。《掌握 PyTorch 2.0 的電腦視覺》彌補了理論與應用之間的差距,指導讀者掌握 PyTorch 的基本要素,同時使他們能夠解決現實世界的挑戰。

本書從 PyTorch 的演變和獨特特性開始,介紹張量、計算圖和神經網絡等基礎概念。接著進入更高級的主題,如卷積神經網絡 (CNN)、遷移學習和數據增強。實作章節專注於建立模型、優化性能和可視化架構。專門領域包括使用 PyTorch Lightning 進行高效訓練、在邊緣設備上部署模型以及使模型準備好進入生產環境。

探索尖端應用,從物體檢測模型如 YOLO 和 Faster R-CNN 到圖像分類架構如 ResNet 和 Inception。到最後,讀者將能夠自信地實施可擴展的 AI 解決方案,並在這個快速發展的領域中保持領先。無論你是學生、AI 愛好者還是專業人士,本書都能幫助你利用 PyTorch 2.0 的力量來進行電腦視覺。

**目錄**
1. 深入了解 PyTorch 2.0
2. PyTorch 基礎
3. 從 PyTorch 1.x 過渡到 PyTorch 2.0
4. 探索人工神經網絡
5. 深入卷積神經網絡 (CNN)
6. 視覺任務的數據增強與預處理
7. 探索 PyTorch 的遷移學習
8. 高級圖像分類模型
9. 物體檢測模型
10. 提升模型性能的技巧與竅門
11. 使用 PyTorch Lightning 進行高效訓練
12. 模型部署與生產準備考量

**索引**