PyTorch Cookbook: 100+ Solutions across RNNs, CNNs, python tools, distributed training and graph networks
Rosch, Matthew
- 出版商: Gitforgits
- 出版日期: 2023-10-04
- 售價: $2,530
- 貴賓價: 9.5 折 $2,404
- 語言: 英文
- 頁數: 240
- 裝訂: Quality Paper - also called trade paper
- ISBN: 8119177967
- ISBN-13: 9788119177967
-
相關分類:
Python、程式語言、DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook, ' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters.
The book simplifies neural networks, training, optimization, and deployment strategies chapter by chapter. The first part covers PyTorch basics, data preprocessing, tokenization, and vocabulary. Next, it builds CNN, RNN, Attentional Layers, and Graph Neural Networks. The book emphasizes distributed training, scalability, and multi-GPU training for real-world scenarios. Practical embedded systems, mobile development, and model compression solutions illuminate on-device AI applications. However, the book goes beyond code and algorithms. It also offers hands-on troubleshooting and debugging for end-to-end deep learning development. 'PyTorch Cookbook' covers data collection to deployment errors and provides detailed solutions to overcome them.
This book integrates PyTorch with ONNX Runtime, PySyft, Pyro, Deep Graph Library (DGL), Fastai, and Ignite, showing you how to use them for your projects. This book covers real-time inferencing, cluster training, model serving, and cross-platform compatibility. You'll learn to code deep learning architectures, work with neural networks, and manage deep learning development stages. 'PyTorch Cookbook' is a complete manual that will help you become a confident PyTorch developer and a smart Deep Learning engineer. Its clear examples and practical advice make it a must-read for anyone looking to use PyTorch and advance in deep learning.
Key Learnings
- Comprehensive introduction to PyTorch, equipping readers with foundational skills for deep learning.
- Practical demonstrations of various neural networks, enhancing understanding through hands-on practice.
- Exploration of Graph Neural Networks (GNN), opening doors to cutting-edge research fields.
- In-depth insight into PyTorch tools and libraries, expanding capabilities beyond core functions.
- Step-by-step guidance on distributed training, enabling scalable deep learning and AI projects.
- Real-world application insights, bridging the gap between theoretical knowledge and practical execution.
- Focus on mobile and embedded development with PyTorch, leading to on-device AI.
- Emphasis on error handling and troubleshooting, preparing readers for real-world challenges.
- Advanced topics like real-time inferencing and model compression, providing future ready skill.
- Introduction to PyTorch 2.0
- Deep Learning Building Blocks
- Convolutional Neural Networks
- Recurrent Neural Networks
- Natural Language Processing
- Graph Neural Networks (GNNs)
- Working with Popular PyTorch Tools
- Distributed Training and Scalability
- Mobile and Embedded Development
商品描述(中文翻譯)
「開始一個PyTorch開發者和深度學習工程師的職業生涯?」請查看這本《PyTorch Cookbook》,這是一本包含PyTorch和相關生態系統的基本食譜和解決方案的全面指南。這本書以易讀的章節從初學者到專家介紹了PyTorch深度學習開發。
這本書逐章簡化了神經網絡、訓練、優化和部署策略。第一部分涵蓋了PyTorch基礎知識、數據預處理、分詞和詞彙表。接下來,它構建了CNN、RNN、注意力層和圖形神經網絡。這本書強調了分佈式訓練、可擴展性和多GPU訓練在實際場景中的應用。實用的嵌入式系統、移動開發和模型壓縮解決方案闡明了設備上的AI應用。然而,這本書不僅僅涉及代碼和算法,還提供了端到端深度學習開發的實用故障排除和調試。《PyTorch Cookbook》涵蓋了從數據收集到部署錯誤的解決方案。
這本書將PyTorch與ONNX Runtime、PySyft、Pyro、Deep Graph Library (DGL)、Fastai和Ignite集成在一起,向您展示如何在項目中使用它們。本書涵蓋了實時推理、集群訓練、模型服務和跨平台兼容性。您將學習編寫深度學習架構、使用神經網絡和管理深度學習開發階段。《PyTorch Cookbook》是一本完整的手冊,將幫助您成為一名自信的PyTorch開發者和聰明的深度學習工程師。它清晰的示例和實用的建議使其成為任何想要使用PyTorch並在深度學習中取得進展的人必讀之書。
主要學習內容:
- 全面介紹PyTorch,為深度學習提供基礎技能。
- 通過實踐演示各種神經網絡,增強理解。
- 探索圖形神經網絡(GNN),打開尖端研究領域的大門。
- 深入了解PyTorch工具和庫,擴展核心功能。
- 逐步指導分佈式訓練,實現可擴展的深度學習和AI項目。
- 實際應用見解,彌合理論知識和實際執行之間的差距。
- 聚焦於使用PyTorch進行移動和嵌入式開發,實現設備上的AI。
- 強調錯誤處理和故障排除,為讀者準備應對現實世界的挑戰。
- 深入研究實時推理和模型壓縮等高級主題,提供未來所需的技能。
目錄:
1. PyTorch 2.0介紹
2. 深度學習基礎模塊
3. 卷積神經網絡
4. 循環神經網絡
5. 自然語言處理
6. 圖形神經網絡(GNN)
7. 使用熱門PyTorch工具
8. 分佈式訓練和可擴展性
9. 移動和嵌入式開發