PyTorch Cookbook: 100+ Solutions across RNNs, CNNs, python tools, distributed training and graph networks
暫譯: PyTorch 食譜:超過 100 種解決方案涵蓋 RNN、CNN、Python 工具、分散式訓練及圖形網絡

Rosch, Matthew

  • 出版商: Gitforgits
  • 出版日期: 2023-10-04
  • 售價: $2,260
  • 貴賓價: 9.5$2,147
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 8119177967
  • ISBN-13: 9788119177967
  • 相關分類: Python程式語言DeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook, ' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters.


The book simplifies neural networks, training, optimization, and deployment strategies chapter by chapter. The first part covers PyTorch basics, data preprocessing, tokenization, and vocabulary. Next, it builds CNN, RNN, Attentional Layers, and Graph Neural Networks. The book emphasizes distributed training, scalability, and multi-GPU training for real-world scenarios. Practical embedded systems, mobile development, and model compression solutions illuminate on-device AI applications. However, the book goes beyond code and algorithms. It also offers hands-on troubleshooting and debugging for end-to-end deep learning development. 'PyTorch Cookbook' covers data collection to deployment errors and provides detailed solutions to overcome them.


This book integrates PyTorch with ONNX Runtime, PySyft, Pyro, Deep Graph Library (DGL), Fastai, and Ignite, showing you how to use them for your projects. This book covers real-time inferencing, cluster training, model serving, and cross-platform compatibility. You'll learn to code deep learning architectures, work with neural networks, and manage deep learning development stages. 'PyTorch Cookbook' is a complete manual that will help you become a confident PyTorch developer and a smart Deep Learning engineer. Its clear examples and practical advice make it a must-read for anyone looking to use PyTorch and advance in deep learning.


Key Learnings
  • Comprehensive introduction to PyTorch, equipping readers with foundational skills for deep learning.
  • Practical demonstrations of various neural networks, enhancing understanding through hands-on practice.
  • Exploration of Graph Neural Networks (GNN), opening doors to cutting-edge research fields.
  • In-depth insight into PyTorch tools and libraries, expanding capabilities beyond core functions.
  • Step-by-step guidance on distributed training, enabling scalable deep learning and AI projects.
  • Real-world application insights, bridging the gap between theoretical knowledge and practical execution.
  • Focus on mobile and embedded development with PyTorch, leading to on-device AI.
  • Emphasis on error handling and troubleshooting, preparing readers for real-world challenges.
  • Advanced topics like real-time inferencing and model compression, providing future ready skill.


Table of Content
  1. Introduction to PyTorch 2.0
  2. Deep Learning Building Blocks
  3. Convolutional Neural Networks
  4. Recurrent Neural Networks
  5. Natural Language Processing
  6. Graph Neural Networks (GNNs)
  7. Working with Popular PyTorch Tools
  8. Distributed Training and Scalability
  9. Mobile and Embedded Development


商品描述(中文翻譯)

開始您的 PyTorch 開發者和深度學習工程師職業生涯? 參考這本《PyTorch 食譜》,這是一本全面的指南,提供 PyTorch 及其生態系統的基本配方和解決方案。這本書涵蓋了從初學者到專家的 PyTorch 深度學習開發,章節編寫清晰。

本書逐章簡化神經網絡、訓練、優化和部署策略。 第一部分涵蓋 PyTorch 基礎知識、數據預處理、標記化和詞彙。接下來,構建 CNN、RNN、注意力層和圖神經網絡。本書強調分佈式訓練、可擴展性和多 GPU 訓練,以應對現實世界的場景。 實用的嵌入式系統、移動開發和模型壓縮解決方案照亮了設備上的 AI 應用。然而,本書不僅僅是代碼和算法。它還提供了端到端深度學習開發的實用故障排除和調試。《PyTorch 食譜》涵蓋了從數據收集到部署錯誤,並提供詳細的解決方案來克服這些問題。

本書將 PyTorch 與 ONNX Runtime、PySyft、Pyro、深度圖書館 (DGL)、Fastai 和 Ignite 整合,展示如何在您的項目中使用它們。這本書涵蓋了實時推理、集群訓練、模型服務和跨平台兼容性。 您將學會編寫深度學習架構、處理神經網絡以及管理深度學習開發階段。《PyTorch 食譜》是一本完整的手冊,將幫助您成為一名自信的 PyTorch 開發者和聰明的深度學習工程師。其清晰的範例和實用建議使其成為任何希望使用 PyTorch 並在深度學習領域進步的人的必讀書籍。

主要學習內容


  • 全面介紹 PyTorch,為讀者提供深度學習的基礎技能。

  • 各種神經網絡的實用演示,通過實踐增強理解。

  • 探索圖神經網絡 (GNN),開啟前沿研究領域的大門。

  • 深入了解 PyTorch 工具和庫,擴展核心功能以外的能力。

  • 逐步指導分佈式訓練,使可擴展的深度學習和 AI 項目成為可能。

  • 現實世界應用的見解,彌合理論知識與實踐執行之間的差距。

  • 專注於使用 PyTorch 的移動和嵌入式開發,實現設備上的 AI。

  • 強調錯誤處理和故障排除,為讀者準備面對現實世界的挑戰。

  • 高級主題如實時推理和模型壓縮,提供未來所需的技能。

目錄


  1. PyTorch 2.0 介紹

  2. 深度學習基礎構件

  3. 卷積神經網絡

  4. 遞歸神經網絡

  5. 自然語言處理

  6. 圖神經網絡 (GNNs)

  7. 使用流行的 PyTorch 工具

  8. 分佈式訓練和可擴展性

  9. 移動和嵌入式開發