知識圖譜建模與智能推理技術
吳重光//納永良著
- 出版商: 化學工業
- 出版日期: 2022-01-01
- 定價: $588
- 售價: 8.5 折 $500
- 語言: 簡體中文
- 頁數: 346
- 裝訂: 平裝
- ISBN: 7122385019
- ISBN-13: 9787122385017
-
相關分類:
DeepLearning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$221Python 機器學習及實踐 --- 從零開始通往 Kaggle 競賽之路
-
$403數據科學家養成手冊
-
$602$566 -
$890$757 -
$505知識圖譜與深度學習
-
$261知識圖譜的自然語言查詢和關鍵詞查詢
-
$780$663 -
$580$452 -
$403會話式AI:自然語言處理與人機交互
-
$403圖神經網絡:基礎與前沿
-
$419$398 -
$599$509 -
$690$538 -
$828$787 -
$599$509 -
$750$593 -
$580$435 -
$450$405 -
$254程序員的數學4:圖論入門
-
$454知識系統與知識圖譜
-
$551自然語言處理技術 — 文本信息抽取及應用研究
-
$620$484 -
$1,200$948 -
$449知識圖譜 — 面向科技文獻的構建技術與應用實踐
-
$479$455
相關主題
商品描述
本書全面詳細地介紹了第三代人工智能係統的核心技術及其實現方法,具有多領域普遍應用價值。
本書是人工智能專家系統工業應用的實用型教科書,也是人工智能專家系統工程實踐指導書。
本書是對第三代人工智能技術的全面探索,是開發和應用實踐的總結。
本書內容包括:
知識本體、信息標準化和領域知識本體,方法和任務知識本體,高效推理算法、圖論和網絡拓撲,
基於符號有向圖的深度學習,知識圖譜建核與智能推理軟件AI3的設計與開發,以及AI3在智能教學和過程工業中的應用。
軟件AI3分為AI3普及版(自由拷貝,不限使用)、AI3智能教學版以及AI3專業版(適用於復雜過程工業系統AI應用)。
本書相關操作視頻及部分彩圖做成了二維碼形式,掃描即可查看。
本書適合作為大學本科人工智能專業的教材,
也可作為教師開發專業教學模型的培訓用書,對從事人工智能工業應用的技術人員具有實際參考價值。
目錄大綱
第一章緒論1
1.1知識圖譜建模與智能推理的概念和沿革1
1.2知識圖譜和智能推理的應用進展4
1.3知識圖譜建模與智能推理的需求分析12
1.4本書各章內容概要15
第二章知識本體、信息標準化和領域知識本體17
2.1知識本體17
2.1.1知識本體的基本類型19
2.1.2知識本體的設計規則20
2.2工業自動化信息國際標準ISO 15926 21
2.2.1ISO 15926簡介21
2.2.2ISO 15926-2知識本體的基本要素23
2.3ISO 15926原理借鑒和擴展31
2.3.1過程系統的領域知識本體內容信息分類31
2.3.2過程系統的領域知識本體結構信息分類32
2.3.3影響方程35
2.4過程系統的領域知識本體總貌37
2.5劇情物件模型(SOM)39
2.5.1劇情的定義39
2.5.2危險劇情的定義39
2.5.3劇情物件模型(SOM)設計40
2.5.4危險劇情在系統安全領域的應用進展48
第三章方法和任務知識本體56
3.1常用推理分析方法56
3.1.1演繹法——正向推理56
3.1.2歸納法——反向推理57
3.1.3溯因法——雙向推理58
3.1.4默認推理58
3.1.5因果反事實推理59
3.2可操作性分析(HAZOP)方法60
3.2.1HAZOP的產生背景和意義60
3.2.2HAZOP國際標準和術語定義61
3.2.3HAZOP原理62
3.2.4設計描述64
3.2.5HAZOP應用65
3.2.6HAZOP分析步驟67
3.2.7人工HAZOP分析方法的不足和改進76
3.3保護層分析(LOPA)方法81
3.3.1LOPA的定義和作用81
3.3.2LOPA的優點82
3.3.3LOPA的局限性82
3.3.4LOPA的結果類型83
3.3.5執行LOPA的必備條件83
3.3.6LOPA方法描述83
第四章高效推理算法、圖論與網絡拓撲90
4.1高效基本回路搜索算法90
4.1.1詹森回路搜索算法90
4.1.2詹森回路搜索算法原理92
4.1.3有向圖基本回路搜索算法程序92
4.2有向圖基本通路搜索算法及程序97
4.2.1有向圖基本通路搜索算法要點97
4.2.2有向圖基本通路搜索算法程序設計98
4.2.3基本通路搜索算法程序例題99
4.3網絡獨立通路和回路搜索算法應用案例100
4.3.1信號流圖的穩態和動態解法100
4.3.2圖形化控制系統信號流圖分析CSA軟件101
4.3.3采用CSA自動解算復雜信號流圖系統107
4.4回路搜索和推理在動態系統分析和決策中的作用113
第五章基於符號有向圖(SDG)的深度學習119
5.1符號有向圖(SDG)方法的歷史與進展121
5.2SDG方法的優缺點123
5.3SDG原理與建模124
5.3.1定量和定性仿真與SDG的關係124
5.3.2SDG模型及定義126
5.3.3SDG建模方法和原則128
5.3.4SDG模型的主要推理機制131
5.4SDG簡單建模實例132
5.4.1世界系統SDG建模132
5.4.2離心泵與液位系統SDG建模133
5.5SDG模型簡化141
5.6加熱爐SDG建模與驗證試驗142
5.6.1加熱爐工藝流程簡介143
5.6.2加熱爐故障診斷模型的建立145
5.6.3SDG模型檢驗與驗證方法分類152
5.6.4加熱爐SDG故障診斷試驗154
5.7反應再生裝置SDG故障診斷試驗158
5.7.1反應再生裝置工藝流程簡介158
5.7.2反應再生裝置故障診斷模型的建立162
5.7.3反應再生裝置SDG故障診斷試驗167
5.8SDG深度學習啟示172
第六章知識圖譜建模與智能推理軟件AI3的設計與開發174
6.1AI3概述174
6.2AI3總體功能、結構設計描述和應用174
6.3圖形化人機界面使用說明與要點177
6.3.1AI3圖形化建模編程要點177
6.3.2AI3基本畫面和圖形化操作方法設計與實現178
6.4推理引擎開發190
6.4.1具體事件一致性和條件約束推理方法190
6.4.2正向推理192
6.4.3反向推理192
6.4.4雙向推理193
6.4.5AI3推理速度測試194
6.5推理輸出結果表達197
6.5.1AI3推理結果畫面197
6.5.2工況數據(“快門”)一覽表202
6.5.3反應溫度記錄曲線查詢202
6.5.4模型中具體事件超限狀態顯示203
6.6AI3應用建模方法205
6.6.1經驗漸進法建模要點206
6.6.2“與門”串聯連接規則206
6.6.3經驗與深度學習相結合的建模要點207
6.6.4知識圖譜的初步認知212
第七章AI3在智能教學中的應用214
7.1智能教學系統(ITS)應用進展214
7.2學習內容、教學方法和智能教學219
7.3智能仿真培訓系統222
7.4知識本體模型與仿真模型的協同技術226
7.4.1仿真模型的質量評估226
7.4.2動態仿真模型的特點及建模注意事項229
7.5高精度動態仿真模型開發案例231
7.5.1充分利用工程設計的成熟計算方法231
7.5.2閥門特性仿真建模234
7.5.3間歇反應動力學仿真建模238
7.6多功能過程與控制仿真實驗系統245
7.6.1MPCE實驗系統構成246
7.6.2MPCE過程動態特性測試實驗案例254
7.6.3PID控制器參數整定實驗257
7.7MPCE連續反應先進控制案例262
7.7.1連續反應系統(CSTR)工藝流程262
7.7.2CSTR控制硬件配置263
7.7.3CSTR控制目標263
7.7.4CSTR系統測試及分析264
7.7.5系統控制策略設計267
7.8智能型危險化學品特種作業仿真培訓與考核軟件272
7.8.1重特大事故的主因——人為失誤274
7.8.2預防操作工人為失誤必要的技能、難點和解決方法274
7.8.3危險化學品特種作業實際操作仿真培訓與考核系列軟件276
7.8.4AI3-TZZY培訓與考核軟件內容277
7.8.5AI3-TZZY系統考核方法要點279
7.8.6AI3-TZZY培訓與考核軟件特點280
7.8.7智能仿真培訓系列軟件主要類型288
7.8.8AI3和智能仿真軟件適用範圍288
第八章AI3在過程工業中的應用290
8.1大型過程工業智能安全評估應用290
8.2智能HAZOP軟件CAH使用方法295
8.3大型過程工業智能故障診斷探索308
結語316
附錄一因果反事實推理“如果-怎麼樣?”化工過程典型問題集319
附錄二專家陪練-AI3軟件說明334
參考文獻341