Essential Calculus: Early Transcendental Functions, 5/e (Metric Version)
暫譯: 基本微積分:早期超越函數,第5版(公制版)

Ron Larson, Bruce H. Edwards

買這商品的人也買了...

相關主題

商品描述

Description
Welcome to the International Metric Version of Essential Calculus: Early Transcendental Functions. For this metric version, the units of measurement used in most of the examples and exercises have been changed from U.S. Customary units to metric units. We did not convert problems that are specific to the U.S. Customary units, such as dimensions of a baseball field or U.S. postal rates. We are excited to offer you a new edition with more resources then ever that will help you understand and master calculus. This text includes features and resources that continue to make Essential Calculus: Early Transcendental Functions a valuable learning tool for students and a trustworthy teaching tool for instructors.

Essential Calculus: Early Transcendental Functions provides the clear instruction, precise mathematics, and thorough coverage that you expect for your course.

Features

  • NEW Big Ideas of Calculus
    • We have added a new feature to help you discover and understand the Big Ideas of Calculus. This feature has three parts.
    • The Big Ideas of Calculus notes give you an overview of the major concepts of a chapter and how they relate to the earlier concepts you have studied. These notes appear near the beginning of a chapter and in the chapter review.
    • In each section and in the chapter review, make sure you do the Exploring Concepts exercises. These exercises will help you develop a deeper and clearer knowledge of calculus. Work through these exercises to build and strengthen your understanding of the concepts.
    • To continue exploring calculus, do the Building on Concepts exercises at the end of the chapter review. Not only will these exercises help you expand your knowledge and use of calculus, they will prepare you to learn concepts in later chapters.
  • UPDATED Exercise Sets
    The exercise sets have been carefully and extensively examined to ensure they are rigorous and relevant and to include topics out users have suggested. The exercises are organized and titled so you can better see the connections better see the connections between examples and exercises. Multi-step, real-life exercises reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the concepts in real-life situations.
  • Section Objectives
    A bulleted list of learning objectives provides you with the opportunity to preview what will be presented in the upcoming section.
  • Theorems
    Theorems provide the conceptual framework for calculus. Theorems are clearly stated and separated from the rest of the text by boxes for quick visual reference. Key proofs often follow the theorem and can be found in appendix A.
  • Definitions
    As with theorems, definitions are clearly stated using precise, formal wording and are separated from the text by boxes for quick visual reference.
  • Explorations
    Explorations provide unique challenges to study concepts that have not yet been formally covered in the text. They allow you to learn by discovery and introduce topics related to ones presently being studied. Exploring topics in this way encourages you to think outside the box.
  • UPDATED Remarks
    These hints and tips reinforce or expand upon concepts, help you learn how to study mathematics, caution you about common errors, address special cases, or show an alternative solution to an example. We have added several new Remarks to help students who need more in-depth algebra support.
  • UPDATED Historical Notes and Biographies
    Historical Notes provide you with background information on the foundations of calculus. The Biographies introduce you to the people who created and contributed to calculus. We have added several new biographies.
  • Technology
    Throughout the book, technology boxes show you how to use technology to solve problems and explore concepts of calculus. These tips also point out some pitfalls of using technology.
  • How Do You See It? Exercise
    The How Do You See It? exercise in each section presents a problem that you will solve by visual inspection using the concepts learned in the lesson.
  • UPDATED Applications
    Carefully chosen applied exercises and examples are included throughout to address the question, “When will I use this ?”These applications are pulled from diverse sources, such as current events, world data, industry trends, and more, and relate to a wide range of interests. Understanding where calculus is (or can be) used promotes fuller understanding of the material.
  • Putnam Exam Challenges
    Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will challenge you and push the limits of your understanding of calculus.

商品描述(中文翻譯)

描述

歡迎來到國際版 基本微積分:早期超越函數 的公制版本。在這個公制版本中,大多數範例和練習所使用的測量單位已從美國慣用單位轉換為公制單位。我們沒有轉換特定於美國慣用單位的問題,例如棒球場的尺寸或美國郵政費率。我們很高興能為您提供這個新版本,擁有比以往更多的資源,幫助您理解和掌握微積分。本書包含的特點和資源,繼續使《基本微積分:早期超越函數》成為學生寶貴的學習工具和教師可靠的教學工具。



基本微積分:早期超越函數 提供了您對課程所期望的清晰指導、精確數學和全面覆蓋。

特點



  • 全新 微積分的重大理念

    • 我們新增了一個功能,幫助您發現和理解微積分的重大理念。這個功能分為三個部分。


    • 微積分的重大理念筆記為您提供了章節主要概念的概述,以及它們與您之前學習的概念之間的關係。這些筆記出現在章節的開頭和章節回顧中。

    • 在每個部分和章節回顧中,請務必完成探索概念練習。這些練習將幫助您發展更深刻和清晰的微積分知識。通過這些練習來建立和加強您對概念的理解。

    • 要繼續探索微積分,請在章節回顧的末尾完成基於概念的建設練習。這些練習不僅將幫助您擴展對微積分的知識和應用,還將為您學習後續章節的概念做好準備。




  • 更新 練習集

    練習集經過仔細和廣泛的檢查,以確保它們的嚴謹性和相關性,並包括用戶建議的主題。練習被組織和標題,以便您更好地看到範例和練習之間的聯繫。多步驟的現實生活練習通過讓您在現實情況中應用概念來加強問題解決技能和概念掌握。


  • 部分目標

    以項目符號列出的學習目標為您提供了預覽即將在下一部分中呈現的內容的機會。


  • 定理

    定理為微積分提供了概念框架。定理被清楚地陳述,並用框框與其餘文本分開,以便快速視覺參考。關鍵證明通常跟隨定理,並可以在附錄A中找到。


  • 定義

    與定理一樣,定義也使用精確、正式的措辭清楚陳述,並用框框與文本分開,以便快速視覺參考。


  • 探索

    探索提供了獨特的挑戰,以研究尚未在文本中正式涵蓋的概念。它們允許您通過發現學習,並引入與當前正在學習的主題相關的主題。以這種方式探索主題鼓勵您跳出框架思考。


  • 更新 備註

    這些提示和建議加強或擴展概念,幫助您學習如何學習數學,提醒您常見錯誤,處理特殊情況,或展示範例的替代解法。我們新增了幾個備註,以幫助需要更深入代數支持的學生。


  • 更新 歷史備註和傳記

    歷史備註為您提供有關微積分基礎的背景信息。傳記介紹了創造和貢獻於微積分的人。我們新增了幾個傳記。


  • 技術

    在整本書中,技術框顯示了如何使用技術來解決問題和探索微積分的概念。這些提示還指出了使用技術的一些陷阱。


  • 你怎麼看?練習

    每個部分的你怎麼看?練習提出了一個問題,您將通過使用課程中學到的概念進行視覺檢查來解決。


  • 更新 應用

    精心挑選的應用練習和範例貫穿全書,以解答「我什麼時候會用到這個?」這些應用來自多種來源,如時事、世界數據、行業趨勢等,並與廣泛的興趣相關。理解微積分的應用(或可能的應用)促進了對材料的更全面理解。


  • 普特南考試挑戰

    普特南考試問題出現在選定的部分。這些實際的普特南考試問題將挑戰您並推動您對微積分的理解極限。

目錄大綱

Table of Contents
1. Limits and Their Properties
2. Differentiation
3. Applications of Differentiation
4. Integration
5. Applications of Integration
6. Integration Techniques and Improper Integrals
7. Infinite Series
8. Parametric Equations, and Polar Coordinates
9. Vectores and the Geometry of Space
10. Vector-Valued Functions
11. Functions of Several Variables
12. Multiple Integration
13. Vector Analysis

Appendix A. Proofs of Selected Theorems (Online)*
Appendix B. Integration Tables
Appendix C. Precalculus Reviews (Online)*
Appendix D. Rotation and the General Second-Degree Equation (Online)*
Appendix E. Complex Numberss (Online)*
Appendix F. Business and Economic Applications (Online)*
Answers to Selected Exercises
Index

目錄大綱(中文翻譯)

Table of Contents

1. Limits and Their Properties

2. Differentiation

3. Applications of Differentiation

4. Integration

5. Applications of Integration

6. Integration Techniques and Improper Integrals

7. Infinite Series

8. Parametric Equations, and Polar Coordinates

9. Vectores and the Geometry of Space

10. Vector-Valued Functions

11. Functions of Several Variables

12. Multiple Integration

13. Vector Analysis



Appendix A. Proofs of Selected Theorems (Online)*

Appendix B. Integration Tables

Appendix C. Precalculus Reviews (Online)*

Appendix D. Rotation and the General Second-Degree Equation (Online)*

Appendix E. Complex Numberss (Online)*

Appendix F. Business and Economic Applications (Online)*

Answers to Selected Exercises

Index