Calculus: Early Transcendentals, 9/e (Metric Version) (Custom Solutions) (Hardcover)
暫譯: 微積分:早期超越數,9版(公制版)(自訂解答)(精裝本)

James Stewart , Daniel K. Clegg , Saleem Watson

  • 出版商: Cengage Learning
  • 出版日期: 2024-08-01
  • 定價: $1,480
  • 售價: 9.8$1,450
  • 語言: 英文
  • 頁數: 1408
  • ISBN: 6267533069
  • ISBN-13: 9786267533062
  • 相關分類: 微積分 Calculus
  • 立即出貨

買這商品的人也買了...

相關主題

商品描述

本書序言

●NEW EXPLANATIONS AND EXAMPLES: Careful refinements throughout provide even greater clarity on key concepts such as computing volumes of revolution and setting up triple integrals.
●NEW WEBASSIGN RESOURCES: New digital resources in WebAssign include Explore It interactive learning modules, the MindTap reader for interactive and mobile ebook access, enhanced remediation support, and improved problem types.
●NEW SUBHEADINGS: Additional subsections within chapters help instructors and students find key content more easily to make the text an even more helpful teaching and learning tool.
●NEW SCAFFOLDED EXERCISES: At the beginning of problem sets, new basic exercises reinforce key skills and build student confidence to prepare them for more rigorous exercises and conceptual understanding.

本書特色

●NEW WEBASSIGN RESOURCES: New digital resources in WebAssign include Explore It interactive learning modules, the MindTap reader for interactive and mobile ebook access, enhanced remediation support, and improved problem types.
●NEW EXPLANATIONS AND EXAMPLES: Careful refinements throughout provide even greater clarity on key concepts such as computing volumes of revolution and setting up triple integrals.
●PREREQUISITE SUPPORT: Four diagnostic tests in algebra, analytic geometry, functions, and trigonometry enable students to test their preexisting knowledge and brush up on skills. Quick Prep and Just-in-Time exercises in WebAssign refresh and reinforce prerequisite knowledge.
●STEM APPLICATIONS: Stewart/Clegg/Watson answers the question, "When will I use this?" by showing how Calculus is used as a problem-solving tool in fields such as physics, engineering, chemistry, biology, medicine and the social sciences.
●NEW SCAFFOLDED EXERCISES: At the beginning of problem sets, new basic exercises reinforce key skills and build student confidence to prepare them for more rigorous exercises and conceptual understanding.
●ENGAGING PROJECTS: A wealth of engaging projects reinforce concepts. "Writing Projects" ask students to compare present-day methods with those of the founders of Calculus. "Discovery Projects" anticipate results to be discussed later. "Applied Projects" feature real-world use of mathematics. "Laboratory Projects" anticipate results to be discussed later or encourage discovery through pattern recognition.
●PROBLEM-SOLVING EMPHASIS: George Polya’s problem-solving methodology is introduced at the beginning and reinforced throughout. "Strategies" sections help students select what techniques they'll need to solve problems in situations where the choice is not obvious and help them develop true problem-solving skills and intuition.
●CLEAR EXPOSITION: Dan Clegg and Saleem Watson have remained true to James Stewart's writing style by speaking clearly and directly to students, guiding them through key ideas, theorems, and problem-solving steps, and encouraging them to think as they read and learn calculus.
●QUALITY EXERCISES: With over 8,000 exercises in all, each exercise set carefully progresses from skill-development problems to more challenging problems involving applications and proofs. Conceptual exercises encourage the development of communication skills by explicitly requesting descriptions, conjectures, and explanations. More challenging “Problems Plus” exercises reinforce concepts by requiring students to apply techniques from more than one chapter of the text, and by patiently showing them how to approach a challenging problem.
●NEW SUBHEADINGS: Additional subsections within chapters help instructors and students find key content more easily to make the text an even more helpful teaching and learning tool.
●HELPFUL EXAMPLES: Every concept is supported by thoughtfully worked examples that encourage students to develop an analytic view of the subject. To provide further insight into mathematical concepts, many detailed examples display solutions graphically, analytically and/or numerically. Margin notes expand on and clarify the steps of the solution.

商品描述(中文翻譯)

本書序言

● 新的解釋和範例:全書經過仔細的修訂,對於關鍵概念如計算旋轉體的體積和設置三重積分提供了更大的清晰度。

● 新的 WebAssign 資源:WebAssign 中的新數位資源包括 Explore It 互動學習模組、用於互動和行動電子書訪問的 MindTap 閱讀器、增強的補救支持和改進的題型。

● 新的副標題:章節內的額外小節幫助教師和學生更輕鬆地找到關鍵內容,使文本成為更有幫助的教學和學習工具。

● 新的分層練習:在問題集的開頭,新基本練習加強關鍵技能,並建立學生的信心,以準備他們進行更嚴格的練習和概念理解。

本書特色

● 新的 WebAssign 資源:WebAssign 中的新數位資源包括 Explore It 互動學習模組、用於互動和行動電子書訪問的 MindTap 閱讀器、增強的補救支持和改進的題型。

● 新的解釋和範例:全書經過仔細的修訂,對於關鍵概念如計算旋轉體的體積和設置三重積分提供了更大的清晰度。

● 先修知識支持:代數、解析幾何、函數和三角學的四個診斷測試使學生能夠測試他們的先前知識並加強技能。WebAssign 中的快速準備和即時練習刷新並加強先修知識。

● STEM 應用:Stewart/Clegg/Watson 回答了「我何時會用到這個?」的問題,展示了微積分如何作為解決問題的工具在物理、工程、化學、生物學、醫學和社會科學等領域中使用。

● 新的分層練習:在問題集的開頭,新基本練習加強關鍵技能,並建立學生的信心,以準備他們進行更嚴格的練習和概念理解。

● 吸引人的專案:大量吸引人的專案加強概念。「寫作專案」要求學生比較當代方法與微積分創始人的方法。「探索專案」預測稍後將討論的結果。「應用專案」展示數學的實際應用。「實驗室專案」預測稍後將討論的結果或鼓勵通過模式識別進行探索。

● 問題解決重點:George Polya 的問題解決方法論在開頭介紹並在全書中加強。「策略」部分幫助學生選擇在選擇不明顯的情況下解決問題所需的技術,並幫助他們發展真正的問題解決技能和直覺。

● 清晰的闡述:Dan Clegg 和 Saleem Watson 忠於 James Stewart 的寫作風格,清晰直接地與學生交流,指導他們理解關鍵思想、定理和解題步驟,並鼓勵他們在閱讀和學習微積分時進行思考。

● 高品質的練習:全書共包含超過 8,000 道練習題,每組練習題從技能發展問題逐步進展到更具挑戰性的應用和證明問題。概念性練習通過明確要求描述、猜想和解釋來鼓勵溝通技能的發展。更具挑戰性的「Problems Plus」練習要求學生應用來自多個章節的技術,並耐心地向他們展示如何處理具有挑戰性的問題。

● 新的副標題:章節內的額外小節幫助教師和學生更輕鬆地找到關鍵內容,使文本成為更有幫助的教學和學習工具。

● 有幫助的範例:每個概念都有經過深思熟慮的範例支持,鼓勵學生發展對該主題的分析視角。為了進一步深入數學概念,許多詳細範例以圖形、分析和/或數值方式顯示解決方案。邊欄註解擴展並澄清解決方案的步驟。

目錄大綱

1. FUNCTIONS AND MODELS.
2. LIMITS AND DERIVATIVES.
3. DIFFERENTIATION RULES.
4. APPLICATIONS OF DIFFERENTIATION.
5. INTEGRALS.
6. APPLICATIONS OF INTEGRATION.
7. TECHNIQUES OF INTEGRATION.
8. FURTHER APPLICATIONS OF INTEGRATION.
9. DIFFERENTIAL EQUATIONS.
10. PARAMETRIC EQUATIONS AND POLAR COORDINATES.
11. SEQUENCES, SERIES, AND POWER SERIES.
12. VECTORS AND THE GEOMETRY OF SPACE.
13. VECTOR FUNCTIONS.
14. PARTIAL DERIVATIVES.
15. MULTIPLE INTEGRALS.
16. VECTOR CALCULUS.
APPENDIXES.
A: Numbers, Inequalities, and Absolute Values.
B: Coordinate Geometry and Lines.
C: Graphs of Second-Degree Equations.
D: Trigonometry.
E: Sigma Notation.
F: Proofs of Theorems.
G: The Logarithm Defined as an Integral.
H: Answers to Odd-Numbered Exercises.

目錄大綱(中文翻譯)

1. FUNCTIONS AND MODELS.

2. LIMITS AND DERIVATIVES.

3. DIFFERENTIATION RULES.

4. APPLICATIONS OF DIFFERENTIATION.

5. INTEGRALS.

6. APPLICATIONS OF INTEGRATION.

7. TECHNIQUES OF INTEGRATION.

8. FURTHER APPLICATIONS OF INTEGRATION.

9. DIFFERENTIAL EQUATIONS.

10. PARAMETRIC EQUATIONS AND POLAR COORDINATES.

11. SEQUENCES, SERIES, AND POWER SERIES.

12. VECTORS AND THE GEOMETRY OF SPACE.

13. VECTOR FUNCTIONS.

14. PARTIAL DERIVATIVES.

15. MULTIPLE INTEGRALS.

16. VECTOR CALCULUS.

APPENDIXES.

A: Numbers, Inequalities, and Absolute Values.

B: Coordinate Geometry and Lines.

C: Graphs of Second-Degree Equations.

D: Trigonometry.

E: Sigma Notation.

F: Proofs of Theorems.

G: The Logarithm Defined as an Integral.

H: Answers to Odd-Numbered Exercises.