AI 時代 Math 元年 - 用 Python 全精通數學要素

姜偉生 著

  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-1
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-2
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-3
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-4
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-5
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-6
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-7
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-8
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-9
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-10
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-11
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-12
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-13
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-14
  • AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-15
AI 時代 Math 元年 - 用 Python 全精通數學要素-preview-1

買這商品的人也買了...

相關主題

商品描述

✦✧✦ 圖解思維 + 零基礎 ✦✧✦

▶▶▶ 打破數學間不同單元的壁壘,融會完整的知識體系!

 

全書分為以下幾個部分:

基礎:從加減乘除四則運算開始,並在第12章深入介紹向量和矩陣的基本運算,以及在不同章節穿插線性代數基礎知識。

座標系:56章介紹笛卡爾座標系,將幾何和代數相結合,強調代數式的視覺化和幾何體的參數化。

解析幾何:789章介紹解析幾何內容,重點在於距離度量和橢圓。強調使用等距線和其他視覺化工具,以及橢圓在多個領域的應用。

函式:1014章圍繞函式展開。強調在學習函式時繪製函式線圖、使用視覺化工具觀察二元函式,以及不同函式的特性與應用。第14章解釋數列,強調累加、極限等是微積分的基礎。

微積分:1519章介紹微積分和最佳化問題。導數、偏導數、微分和積分提供了研究函式性質的量化工具。強調使用幾何圖解理解這些概念,以及微積分在最佳化問題中的應用。

機率統計:2021章為機率統計入門。強調代數部分與機率統計的關聯,介紹了二項樹和隨機過程,以及通過影像展示機率統計定義。

線性代數:最後四章介紹線性代數。第22章視覺化向量和向量運算。第232425章以「雞兔同籠三部曲」為核心,通過虛構故事展示了線性方程組、向量空間、投影、最小二乘線性回歸、馬可夫過程和特徵值分解等內容。

 

【本書特點】

將一生中從小學到研究所的數學總整理!

機器學習基礎全部完整打好

將數學視為思想、工具、語言、體系、基石、藝術的角度進行學習

分為基礎、座標系、解析幾何、函式、微積分、機率統計、線性代數七大部分

不再應付考試,重新愛上數學

不再亂猜,寫機器學習程式碼時,每一行指令背後代表的數學基礎都清清楚楚

學數學本身,也學數學歷史,介紹史上幾個最偉大的數學家

 

本書資源可至深智官網下載:deepwisdom.com.tw

作者簡介

姜偉生

  姜偉生,博士FRM。勤奮的小鎮做題家,熱愛知識可視化和開源分享。自20228月開始,在GitHub上開源「鳶尾花書」學習資源,截至20239月,已經分享4000多頁PDF4000多幅矢量圖、約2000個代碼文件,全球讀者數以萬計。

目錄大綱

1 萬物皆數

1.1 數字和運算:人類思想的偉大飛躍

1.2 數字分類:從複數到自然數

1.3 加減:最基本的數學運算

1.4 向量:數字排成行、列

1.5 矩陣:數字排列成長方形

1.6 矩陣: 一組列向量,或一組行向量

1.7 矩陣形狀:每種形狀都有特殊性質和用途

1.8 矩陣加減:形狀相同,對應位置,批次加減

 

2 乘除

2.1 算術乘除:先乘除,後加減,括號內先算

2.2 向量乘法:純量乘法、向量內積、逐項積

2.3 矩陣乘法:最重要的線性代數運算規則

2.4 矩陣乘法第一角度

2.5 矩陣乘法第二角度

2.6 矩陣除法:計算反矩陣

 

3 幾何

3.1 幾何緣起:根植大地,求索星空

3.2 點動成線,線動成面,面動成體

3.3 角度和弧度

3.4 畢氏定理到三角函式

3.5 圓周率估算初賽:割圓術

 

4 代數

4.1 代數的前世今生:薪火相傳

4.2 集合:確定的一堆東西

4.3 從代數式到函式

4.4 巴斯卡三角:代數和幾何的完美合體

4.5 排列組合讓二項式係數更具意義

4.6 巴斯卡三角隱藏的數字規律

4.7 方程式組:求解雞兔同籠問題

 

2 座標系

 

5 笛卡兒座標系

5.1 笛卡兒:我思故我在

5.2 座標系:代數視覺化,幾何參數化

5.3 圖解「雞兔同籠」問題

5.4 極座標:距離和夾角

5.5 參數方程式:引入一個參數

5.6 座標系必須是「橫平垂直的方格」?

 

6 三維座標系

6.1 三維直角座標系

6.2 空間平面:三元一次方程

6.3 空間直線:三元一次方程組

6.4 不等式:劃定區域

6.5 三大類不等式:約束條件

6.6 三維極座標

 

3 解析幾何

 

7 距離

7.1 距離:未必是兩點間最短線段

7.2 歐氏距離:兩點間最短線段

7.3 點到直線的距離

7.4 等距線:換個角度看距離

7.5 距離間的量化關係

 

8 圓錐曲線

8.1 圓錐曲線外傳

8.2 圓錐曲線:對頂圓錐和截面相交

8.3 正圓:特殊的橢圓

8.4 橢圓:機器學習的多面手

8.5 旋轉橢圓:幾何變換的結果

8.6 拋物線:不止是函式

8.7 雙曲線:引力彈弓的軌跡

 

9 深入圓錐曲線

9.1 圓錐曲線:探索星辰大海

9.2 離心率:聯繫不同類型圓錐曲線

9.3 一組有趣的圓錐曲線

9.4 特殊橢圓:和給定矩形相切

9.5 超橢圓:和範數有關

9.6 雙曲函式:基於單位雙曲線

9.7 圓錐曲線的一般形式

 

4 函式

 

10 函式

10.1 當代數式遇到座標系

10.2 一元函式: 一個引數

10.3 一元函式性質

10.4 二元函式:兩個引數

10.5 降維:二元函式切一刀得到一元函式

10.6 等高線:由函式值相等點連成

 

11 代數函式

11.1 初等函式:數學模型的基礎

11.2 一次函式: 一條斜線

11.3 二次函式: 一條拋物線

11.4 多項式函式:從疊加角度來看

11.5 冪函式:底數為引數

11.6 分段函式:不連續函式

 

12 超越函式

12.1 指數函式:指數為引數

12.2 對數函式:把連乘變成連加

12.3 高斯函式:高斯分佈之基礎

12.4 邏輯函式:在0 1 之間設定值

12.5 三角函式:週期函式的代表

12.6 函式變換:平移、縮放、對稱

 

13 二元函式

13.1 二元一次函式:平面

13.2 正圓拋物面:等高線為正圓

13.3 橢圓拋物面:等高線為橢圓

13.4 雙曲拋物面:馬鞍面

13.5 山谷和山脊:無數極值點

13.6 錐面:正圓拋物面開方

13.7 絕對值函式:與超橢圓有關

13.8 邏輯函式:從一元到二元

13.9 高斯函式:機器學習的多面手

 

14 數列

14.1 芝諾悖論:阿基里斯追不上烏龜

14.2 數列分類

14.3 等差數列:相鄰兩項差相等

14.4 等比數列:相鄰兩項比值相等

14.5 費氏數列

14.6 累加:大寫西格瑪

14.7 數列極限:微積分的一塊基石

14.8 數列極限估算圓周率

 

5 微積分

 

15 極限和導數

15.1 牛頓小傳

15.2 極限:研究微積分的重要數學工具

15.3 左極限、右極限

15.4 幾何角度看導數:切線斜率

15.5 導數也是函式

 

16 偏導數

16.1 幾何角度看偏導數

16.2 偏導也是函式

16.3 二階偏導:一階偏導函式的一階偏導

16.4 二元曲面的駐點: 一階偏導為0

 

17 微分

17.1 幾何角度看微分:線性近似

17.2 泰勒級數:多項式函式近似

17.3 多項式近似和誤差

17.4 二元泰勒展開:用多項式曲面近似

17.5 數值微分:估算一階導數

 

18 積分

18.1 萊布尼茲:既生瑜,何生亮

18.2 從小車等加速直線運動說起

18.3 一元函式積分

18.4 高斯函式積分

18.5 誤差函式:S 型函式的一種

18.6 二重積分:類似二重求和

18.7 「偏積分」:類似偏求和

18.8 估算圓周率:牛頓法

18.9 數值積分:黎曼求積

 

19 最佳化入門

19.1 最佳化問題:尋找山峰、山谷

19.2 建構最佳化問題

19.3 約束條件:限定搜尋區域

19.4 一元函式的極值點判定

19.5 二元函式的極值點判定

 

6 機率統計

 

20 機率入門

20.1 機率簡史:出身賭場

20.2 二元樹:一生二、二生三

20.3 拋硬幣:正反面機率

20.4 聊聊機率:向上還是向下

20.5 一枚質地不均勻的硬幣

20.6 隨機中有規律

 

21 統計入門

21.1 統計的前世今生:強國知十三數

21.2 散點圖:當資料遇到座標系

21.3 平均值:集中程度

21.4 標準差:離散程度

21.5 協方差:聯合變化程度

21.6 線性相關係數:線性關係強弱

 

7 線性代數

 

22 向量

22.1 向量:有大小、有方向

22.2 幾何角度看向量運算

22.3 向量簡化距離運算

22.4 向量內積與向量夾角

22.5 二維到三維

22.6 投影:影子的長度

 

23 雞兔同籠1

23.1 從雞兔同籠說起

23.2 「雞」向量與「兔」向量

23.3 那幾隻毛絨耳朵

23.4 「雞兔」套餐

23.5 套餐轉換:基底轉換

23.6 豬引發的投影問題

23.7 黃鼠狼驚魂夜:「雞飛兔脫」與超定方程式組

 

24 雞兔同籠2

24.1 雞兔數量的有趣關係

24.2 試試比例函式: y = ax

24.3 最小平方法

24.4 再試試一次函式: y = ax +b

24.5 再探黃鼠狼驚魂夜:超定方程式組

24.6 統計方法求解回歸參數

 

25 雞兔同籠3

25.1 雞兔互變奇妙夜

25.2 第一角度:「雞/ 兔→雞」和「雞/ 兔→兔」

25.3 第二角度:「雞→雞/ 兔」和「兔→雞/ 兔」

25.4 連續幾夜雞兔轉換

25.5 有向量的地方,就有幾何

25.6 彩蛋