Information Geometry and Its Applications (Applied Mathematical Sciences)
Shun-ichi Amari
- 出版商: Springer
- 出版日期: 2016-02-10
- 售價: $6,290
- 貴賓價: 9.5 折 $5,976
- 語言: 英文
- 頁數: 373
- 裝訂: Hardcover
- ISBN: 4431559779
- ISBN-13: 9784431559771
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,780$1,744 -
$1,460$1,431 -
$2,980$2,831 -
$6,290$5,976 -
$4,200$3,990 -
$4,160$3,952 -
$960R Deep Learning Essentials (Paperback)
-
$2,380$2,261 -
$11,750$11,163 -
$4,560$4,332 -
$798Deep Learning with Hadoop (Paperback)
-
$3,383Translational Bioinformatics and Systems Biology Methods for Personalized Medicine (Paperback)
相關主題
商品描述
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
商品描述(中文翻譯)
這是一本關於資訊幾何的首部綜合性著作,由該領域的創始人撰寫。書中首先以簡單的方式介紹對偶幾何,接著探討廣泛的應用,涵蓋資訊科學、工程學和神經科學。全書分為四個部分,整體上可以獨立閱讀。首先介紹具有散度函數的流形,這直接引入了對偶結構,這是資訊幾何的核心。這部分(第一部分)可以在沒有微分幾何知識的情況下理解。接下來在第二部分中,提供了現代微分幾何的直觀解釋,儘管大部分內容在沒有現代微分幾何的背景下也能理解。第三部分簡明扼要地展示了統計推斷的資訊幾何,包括時間序列分析和半參數估計(Neyman-Scott 問題)。第四部分探討的應用包括機器學習、信號處理、優化和神經網絡等熱門當前主題。這本書是跨學科的,連結數學、資訊科學、物理學和神經科學,邀請讀者進入一個全新的資訊與幾何的世界。這本書非常推薦給尋求新數學方法和工具的研究生和研究人員,這些方法和工具在他們自己的領域中將會非常有用。