Introduction to Learning Classifier Systems (SpringerBriefs in Intelligent Systems)
暫譯: 學習分類系統導論(SpringerBriefs 智能系統系列)

Ryan J. J. Urbanowicz

  • 出版商: Springer
  • 出版日期: 2017-09-06
  • 售價: $2,610
  • 貴賓價: 9.5$2,480
  • 語言: 英文
  • 頁數: 140
  • 裝訂: Paperback
  • ISBN: 3662550067
  • ISBN-13: 9783662550069
  • 海外代購書籍(需單獨結帳)

商品描述

This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. 

The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.

商品描述(中文翻譯)

這本易於理解的入門書籍向讀者展示了如何理解、實現、調整和應用學習分類系統(Learning Classifier Systems, LCS)來解決有趣且困難的問題。文本從基本概念和想法開始建立理解。作者首先探討通過環境互動進行學習,然後逐步介紹構成這種基於規則的進化算法的LCS組件。這些方法的適用性和可調整性通過提供不同組件的常見方法論替代方案的描述得以突顯,這些替代方案適用於從數據挖掘到自主機器人等不同類型的問題。

作者還為這本書配備了練習題和一個簡單的教育性LCS(eLCS)算法(用Python實現)。這本書適合高年級本科生和研究生在計算機科學、工程、生物信息學和控制論等科目中進行課程學習或自學,並適合研究人員、數據分析師和機器學習實踐者。