Stochastic Optimization Methods: Applications in Engineering and Operations Research
暫譯: 隨機優化方法:在工程與運籌學中的應用

Kurt Marti

  • 出版商: Springer
  • 出版日期: 2015-03-23
  • 售價: $5,910
  • 貴賓價: 9.5$5,615
  • 語言: 英文
  • 頁數: 368
  • 裝訂: Hardcover
  • ISBN: 3662462133
  • ISBN-13: 9783662462133
  • 海外代購書籍(需單獨結帳)

商品描述

This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems.

Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations.

In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.

商品描述(中文翻譯)

本書探討在實務中涉及隨機模型參數的優化問題。它詳細說明了穩健最優解的計算,即對隨機參數變化不敏感的最優解,並在適當的情況下需要相應的確定性替代問題。基於隨機數據的概率分佈,並使用決策理論概念,將隨機不確定性下的優化問題轉換為適當的確定性替代問題。

由於涉及概率和期望,本書還展示了如何應用近似解法。提供了幾種確定性和隨機近似方法:泰勒展開法、回歸和響應面方法(RSM)、概率不等式、生存/失敗域的多重線性化、離散化方法、凸近似/確定性下降方向/有效點、隨機近似和梯度程序以及概率和期望的微分公式。

在第三版中,本書進一步發展了隨機優化方法。特別是,它現在展示了如何將隨機優化方法應用於工程、經濟學和運籌學中出現的重要具體問題的近似解。

最後瀏覽商品 (20)