Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges (Lecture Notes in Computer Science)
- 出版商: Springer
- 出版日期: 2014-06-26
- 售價: $2,430
- 貴賓價: 9.5 折 $2,309
- 語言: 英文
- 頁數: 380
- 裝訂: Paperback
- ISBN: 3662439670
- ISBN-13: 9783662439678
-
相關分類:
Computer-Science、Data-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of <= 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning.
This state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.
商品描述(中文翻譯)
我們數位世界中的一個重大挑戰是大型、複雜且常常結構薄弱的資料集,以及龐大的非結構化資訊量。這個「大數據」挑戰在生物醫學資訊學中尤為明顯:精準醫學的趨勢導致生物醫學資料集的數量激增。儘管人類專家在<= 3維度的模式識別方面非常出色,但大部分資料都是高維度的,這使得手動分析往往不可能,醫生和生物醫學研究人員都無法記住所有這些事實。兩個領域的方法和方法的協同組合為解決這些問題提供了理想條件:人機交互(HCI)和知識發現/數據挖掘(KDD),目標是通過機器學習支持人類能力。
這份最新研究報告是HCI-KDD專家網絡的成果,包含了19篇精心選擇和審查的論文,涉及七個熱門且有前景的研究領域:領域1:數據整合、數據預處理和數據映射;領域2:數據挖掘算法;領域3:基於圖的數據挖掘;領域4:基於熵的數據挖掘;領域5:拓撲數據挖掘;領域6:數據可視化;領域7:隱私、數據保護、安全性。