Data Mining in Large Sets of Complex Data (Paperback)
暫譯: 大型複雜數據集中的資料探勘 (平裝本)
Robson Leonardo Ferreira Cordeiro, Christos Faloutsos, Caetano Traina Júnior
- 出版商: Springer
- 出版日期: 2013-01-11
- 售價: $2,400
- 貴賓價: 9.5 折 $2,280
- 語言: 英文
- 頁數: 116
- 裝訂: Paperback
- ISBN: 1447148894
- ISBN-13: 9781447148890
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$6,310$5,995 -
$6,310$5,995 -
$6,950$6,603 -
$1,350$1,323 -
$1,560$1,529 -
$1,450$1,421 -
$1,700$1,666 -
$5,870$5,577 -
$5,390$5,121 -
$8,075Handbook on Array Processing and Sensor Networks (Hardcover)
-
$5,810$5,520 -
$5,050$4,798 -
$1,744Antenna Theory and Design, 3/e (Hardcover)
-
$1,680$1,646 -
$1,080$1,058 -
$5,140$4,883 -
$2,390$2,271 -
$1,560$1,529 -
$1,960$1,921 -
$534$507 -
$3,610Multifunctional Antennas and Arrays for Wireless Communication Systems (Hardcover)
-
$834$792 -
$1,750$1,715 -
$1,850$1,813 -
$1,920$1,882
相關主題
商品描述
The amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of Terabytes, how can we find regions aiming at identifying native rainforests, deforestation or reforestation? Can it be made automatically? Based on the work discussed in this book, the answers to both questions are a sound “yes”, and the results can be obtained in just minutes. In fact, results that used to require days or weeks of hard work from human specialists can now be obtained in minutes with high precision. Data Mining in Large Sets of Complex Data discusses new algorithms that take steps forward from traditional data mining (especially for clustering) by considering large, complex datasets. Usually, other works focus in one aspect, either data size or complexity. This work considers both: it enables mining complex data from high impact applications, such as breast cancer diagnosis, region classification in satellite images, assistance to climate change forecast, recommendation systems for the Web and social networks; the data are large in the Terabyte-scale, not in Giga as usual; and very accurate results are found in just minutes. Thus, it provides a crucial and well timed contribution for allowing the creation of real time applications that deal with Big Data of high complexity in which mining on the fly can make an immeasurable difference, such as supporting cancer diagnosis or detecting deforestation.
商品描述(中文翻譯)
目前企業所收集的數據量和複雜性正以指數速度增長。因此,對於大數據的分析如今成為計算機科學中的一個核心挑戰,特別是對於複雜數據。例如,給定一個包含數十TB的衛星影像數據庫,我們如何找到旨在識別原生雨林、森林砍伐或再造林的區域?這可以自動化完成嗎?根據本書中討論的工作,這兩個問題的答案都是肯定的,結果可以在幾分鐘內獲得。事實上,以前需要人類專家花費數天或數週辛勤工作的結果,如今可以在幾分鐘內以高精度獲得。《在大型複雜數據集中的數據挖掘》討論了從傳統數據挖掘(特別是聚類)向前邁進的新算法,這些算法考慮了大型複雜數據集。通常,其他工作專注於一個方面,要麼是數據大小,要麼是複雜性。而本工作同時考慮了這兩者:它能夠從高影響力的應用中挖掘複雜數據,例如乳腺癌診斷、衛星影像中的區域分類、氣候變化預測的輔助、網路和社交網絡的推薦系統;這些數據的規模達到TB級,而不是通常的GB級;而且在幾分鐘內就能找到非常準確的結果。因此,它為創建處理高複雜度大數據的實時應用提供了至關重要且恰逢其時的貢獻,其中即時挖掘可以帶來無法估量的差異,例如支持癌症診斷或檢測森林砍伐。