A Reliability-Aware Fusion Concept Toward Robust Ego-Lane Estimation Incorporating Multiple Sources
暫譯: 一個可靠性意識的融合概念:整合多個來源以實現穩健的自我車道估計
Nguyen, Tuan Tran
- 出版商: Springer
- 出版日期: 2019-06-26
- 售價: $2,040
- 貴賓價: 9.5 折 $1,938
- 語言: 英文
- 頁數: 164
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3658269480
- ISBN-13: 9783658269487
海外代購書籍(需單獨結帳)
商品描述
To tackle the challenges of the road estimation task, many works employ a fusion of multiple sources. By that, a commonly made assumption is that the sources always are equally reliable. However, this assumption is inappropriate since each source has certain advantages and drawbacks depending on the operational scenarios. Therefore, Tuan Tran Nguyen proposes a novel concept by incorporating reliabilities into the multi-source fusion so that the road estimation task can alternately select only the most reliable sources. Thereby, the author estimates the reliability for each source online using classifiers trained with the sensor measurements, the past performance and the context. Using real data recordings, he shows via experimental results that the presented reliability-aware fusion increases the availability of automated driving up to 7 percentage points compared to the average fusion.
Contents
Contents
- Reliability-Aware Fusion Framework
- Assessing and Learning Reliability for Ego-Lane Estimation
- Reliability-Based Ego-Lane Estimation Using Multiple Sources
- Scientists and students in the fields of IT, fusion and automated driving
- Engineers working in industrial research and development of automated driving
商品描述(中文翻譯)
為了解決道路估計任務的挑戰,許多研究採用了多來源的融合方法。然而,這種方法通常假設各來源的可靠性是相等的。然而,這一假設並不恰當,因為每個來源根據操作場景的不同都有其優勢和缺點。因此,Tuan Tran Nguyen 提出了一個新概念,將可靠性納入多來源融合中,以便道路估計任務可以交替選擇最可靠的來源。作者通過使用訓練過的分類器,根據傳感器測量、過去的表現和上下文,對每個來源的可靠性進行在線估計。使用實際數據記錄,他通過實驗結果顯示,所提出的考慮可靠性的融合方法相比於平均融合,能將自動駕駛的可用性提高多達 7 個百分點。
內容
- 考慮可靠性的融合框架
- 自我車道估計的可靠性評估與學習
- 基於可靠性的多來源自我車道估計
目標群體
- 資訊科技、自動駕駛及融合領域的科學家和學生
- 從事自動駕駛工業研究與開發的工程師
關於作者
Tuan Tran Nguyen 於 2013 年和 2019 年分別在德國馬格德堡的奧托·馮·古里基大學獲得計算機科學碩士學位和博士學位。他的研究專注於智能車輛中基於可靠性的傳感器融合方法和架構。
作者簡介
Tuan Tran Nguyen received the Master's degree in computer science and the Ph.D. degree from Otto-von-Guericke University Magdeburg, Germany, in 2013 and 2019, respectively. His research focuses on methods and architectures for reliability-based sensor fusion in intelligent vehicles.
作者簡介(中文翻譯)
Tuan Tran Nguyen於2013年和2019年分別獲得德國馬格德堡奧托-馮-古里克大學的計算機科學碩士學位和博士學位。他的研究專注於智能車輛中基於可靠性的感測器融合方法和架構。