Multimodal Perception and Secure State Estimation for Robotic Mobility Platforms
暫譯: 多模態感知與機器人移動平台的安全狀態估計
Liu, Xinghua
- 出版商: Wiley
- 出版日期: 2022-09-21
- 售價: $3,850
- 貴賓價: 9.5 折 $3,658
- 語言: 英文
- 頁數: 224
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 111987601X
- ISBN-13: 9781119876014
-
相關分類:
機器人製作 Robots
海外代購書籍(需單獨結帳)
商品描述
Enables readers to understand important new trends in multimodal perception for mobile robotics
This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. It thoroughly evaluates filter-based secure dynamic pose estimation approaches for autonomous vehicles over multiple attack signals and shows that they outperform conventional Kalman filtered results.
As a modern learning resource, it contains extensive simulative and experimental results that have been successfully implemented on various models and real platforms. To aid in reader comprehension, detailed and illustrative examples on algorithm implementation and performance evaluation are also presented. Written by four qualified authors in the field, sample topics covered in the book include:
- Secure state estimation that focuses on system robustness under cyber-attacks
- Multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors
- A geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, which has been validated using public and self-collected data
- How to achieve real-time road-constrained and heading-assisted pose estimation
This book will appeal to graduate-level students and professionals in the fields of ground vehicle pose estimation and perception who are looking for modern and updated insight into key concepts related to the field of robotic mobility platforms.
商品描述(中文翻譯)
機器人移動平台的多模態感知與安全狀態估計
使讀者了解移動機器人多模態感知的重要新趨勢
本書提供了關於機器人移動平台(如自動駕駛車輛)安全狀態估計和多模態感知的新穎視角。它徹底評估了基於濾波器的自動駕駛車輛安全動態姿態估計方法,針對多種攻擊信號,並顯示其性能優於傳統的卡爾曼濾波結果。
作為一個現代學習資源,本書包含了大量的模擬和實驗結果,這些結果已成功應用於各種模型和實際平台。為了幫助讀者理解,書中還提供了詳細且具說明性的算法實現和性能評估示例。由四位該領域的合格作者撰寫,書中涵蓋的示例主題包括:
- 專注於系統在網路攻擊下的穩健性的安全狀態估計
- 多傳感器融合,基於不同傳感器的互補特性來改善系統性能
- 幾何姿態估計框架,將測量和約束納入統一的融合方案,並使用公共數據和自收集數據進行驗證
- 如何實現實時的道路約束和航向輔助姿態估計
本書將吸引研究生和專業人士,特別是在地面車輛姿態估計和感知領域,尋求有關機器人移動平台相關關鍵概念的現代和更新見解。
作者簡介
Xinghua Liu is a Professor with Xi'an University of Technology. His research interests are secure state estimation and control, cyber-physical systems, and artificial Intelligence.
Rui Jiang is a Staff Algorithm Engineer at the OmniVision Technologies Inc., and an Adjunct Lecturer with the National University of Singapore. His research interests are intelligent sensing, and perception for robotic systems.
Badong Chen is a Professor with Xi'an Jiaotong University. His research interests are signal processing, machine learning, artificial intelligence, neural engineering, and robotics.
Shuzhi Sam Ge is a Professor with the National University of Singapore and an honorary Director of Institute for Future, Qingdao University, China. His research interests are adaptive control, robotics, and artificial Intelligence.
作者簡介(中文翻譯)
劉興華是西安理工大學的教授。他的研究興趣包括安全狀態估計與控制、網路物理系統以及人工智慧。
江瑞是OmniVision Technologies Inc.的算法工程師,並擔任新加坡國立大學的兼任講師。他的研究興趣包括智能感知和機器人系統的感知。
陳八東是西安交通大學的教授。他的研究興趣包括信號處理、機器學習、人工智慧、神經工程和機器人技術。
葛樹志是新加坡國立大學的教授,並擔任中國青島大學未來研究所的榮譽所長。他的研究興趣包括自適應控制、機器人技術和人工智慧。