Multimodal Scene Understanding: Algorithms, Applications and Deep Learning
暫譯: 多模態場景理解:演算法、應用與深度學習

Ying Yang, Michael, Rosenhahn, Bodo, Murino, Vittorio

  • 出版商: Academic Press
  • 出版日期: 2019-07-17
  • 售價: $5,130
  • 貴賓價: 9.5$4,874
  • 語言: 英文
  • 頁數: 422
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0128173580
  • ISBN-13: 9780128173589
  • 相關分類: DeepLearningAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms.

Researchers collecting and analyzing multi-sensory data collections - for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful.

 

  • Contains state-of-the-art developments on multi-modal computing
  • Shines a focus on algorithms and applications
  • Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning

商品描述(中文翻譯)

《多模態場景理解:演算法、應用與深度學習》介紹了多模態計算的最新進展,重點在於計算機視覺和攝影測量。它提供了最新的演算法和應用,涉及結合多個信息來源,並描述了多感測數據和多模態深度學習的角色與方法。本書非常適合來自計算機視覺、遙感、機器人技術和攝影測量領域的研究人員,幫助促進這些領域之間的跨學科互動與合作。

收集和分析多感測數據集的研究人員,例如來自不同平台(如自駕車、監控攝像頭、無人機、飛機和衛星)的KITTI基準(立體+激光),將會發現本書非常有用。

- 包含多模態計算的最新發展
- 專注於演算法和應用
- 提出有關多感測融合和多模態深度學習的新穎深度學習主題

類似商品