Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications
暫譯: 無監督分類:相似性度量、經典與元啟發式方法及其應用
Sanghamitra Bandyopadhyay
- 出版商: Springer
- 出版日期: 2015-01-29
- 售價: $3,050
- 貴賓價: 9.5 折 $2,898
- 語言: 英文
- 頁數: 280
- 裝訂: Paperback
- ISBN: 3642428363
- ISBN-13: 9783642428364
海外代購書籍(需單獨結帳)
相關主題
商品描述
Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature.
This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection.
The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging.
商品描述(中文翻譯)
聚類是一種重要的無監督分類技術,數據點被分組,使得在某種意義上相似的點屬於同一個聚類。聚類分析是一個複雜的問題,因為文獻中存在多種相似性和不相似性度量。
這是第一本專注於聚類的書籍,特別強調基於對稱性的相似性度量和元啟發式方法。其目的是找到輸入數據集的合適分組,以便優化某些標準,並利用此,作者將聚類問題框架化為一個優化問題,其中需要優化的目標可能代表不同的特徵,例如緊湊性、對稱緊湊性、聚類之間的分離或聚類內的連通性。他們詳細解釋了這些技術,並概述了在數據挖掘、遙感、腦成像、基因表達數據分析和人臉檢測等領域的許多具體應用。
這本書對於計算機科學、電氣工程、系統科學和信息技術的研究生和研究人員都將非常有用,既可作為教材,也可作為參考書。對於從事模式識別、數據挖掘、軟計算、元啟發式方法、生物信息學、遙感和腦成像的行業研究人員和實踐者來說,這本書也將是有益的。