Reinforcement Learning: State-of-the-Art (Adaptation, Learning, and Optimization)
暫譯: 強化學習:最前沿技術(適應、學習與優化)
Wiering, Marco, Van Otterlo, Martijn
- 出版商: Springer
- 出版日期: 2012-03-14
- 售價: $14,740
- 貴賓價: 9.5 折 $14,003
- 語言: 英文
- 頁數: 638
- 裝訂: Hardcover
- ISBN: 364227644X
- ISBN-13: 9783642276446
-
相關分類:
Reinforcement、DeepLearning
海外代購書籍(需單獨結帳)
商品描述
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade.
The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research.
Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge
representation in reinforcement learning settings.
商品描述(中文翻譯)
強化學習涵蓋了理性生物在不確定環境中適應性行為的科學,以及尋找在控制、優化和智能代理的適應性行為中解決挑戰性問題的最佳行為的計算方法。作為一個領域,強化學習在過去十年中取得了巨大的進展。
本書的主要目標是呈現一系列最新的調查文章,涵蓋強化學習的主要當代子領域。這包括對部分可觀察環境、層次任務分解、關係知識表示和預測狀態表示的調查。此外,還調查了強化學習中的轉移學習、進化方法和連續空間等主題。此外,幾個章節回顧了強化學習在機器人、遊戲和計算神經科學中的方法。總共介紹了十七個不同的子領域,主要由這些領域的年輕專家撰寫,這些內容真正代表了當前強化學習研究的最前沿。
Marco Wiering 在荷蘭格羅寧根大學的人工智慧系工作。他在各種強化學習主題上發表了大量的研究。Martijn van Otterlo 在荷蘭奈梅亨的拉德堡德大學的認知人工智慧小組工作。他主要專注於強化學習環境中的表達性知識表示。