Structure from Motion using the Extended Kalman Filter (Springer Tracts in Advanced Robotics)

Javier Civera, Andrew J. Davison, José María Martínez Montiel

  • 出版商: Springer
  • 出版日期: 2011-11-05
  • 售價: $4,430
  • 貴賓價: 9.5$4,209
  • 語言: 英文
  • 頁數: 172
  • 裝訂: Hardcover
  • ISBN: 3642248330
  • ISBN-13: 9783642248337
  • 相關分類: 機器人製作 Robots
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The fully automated estimation of the 6 degrees of freedom camera motion and the imaged 3D scenario using as the only input the pictures taken by the camera has been a long term aim in the computer vision community. The associated line of research has been known as Structure from Motion (SfM). An intense research effort during the latest decades has produced spectacular advances; the topic has reached a consistent state of maturity and most of its aspects are well known nowadays. 3D vision has immediate applications in many and diverse fields like robotics, videogames and augmented reality; and technological transfer is starting to be a reality.

This book describes one of the first systems for sparse point-based 3D reconstruction and egomotion estimation from an image sequence; able to run in real-time at video frame rate and assuming quite weak prior knowledge about camera calibration, motion or scene. Its chapters unify the current perspectives of the robotics and computer vision communities on the 3D vision topic: As usual in robotics sensing, the explicit estimation and propagation of the uncertainty hold a central role in the sequential video processing and is shown to boost the efficiency and performance of the 3D estimation. On the other hand, some of the most relevant topics discussed in SfM by the computer vision scientists are addressed under this probabilistic filtering scheme; namely projective models, spurious rejection, model selection and self-calibration.

商品描述(中文翻譯)

完全自動化地估算六自由度相機運動及影像中的三維場景,僅以相機拍攝的圖片作為輸入,一直是計算機視覺領域的長期目標。這一相關研究方向被稱為結構從運動(Structure from Motion, SfM)。在過去幾十年中,強烈的研究努力帶來了驚人的進展;該主題已達到一致的成熟狀態,現在其大多數方面都已為人所知。三維視覺在許多不同的領域中具有直接應用,如機器人技術、電子遊戲和擴增實境;而技術轉移也開始成為現實。

本書描述了從影像序列中進行稀疏點基三維重建和自我運動估算的第一個系統之一;該系統能夠以視頻幀速率實時運行,並假設對相機校準、運動或場景的先驗知識相當薄弱。其章節統合了機器人技術和計算機視覺社群對三維視覺主題的當前觀點:如同在機器人感知中,明確的估算和不確定性的傳播在序列視頻處理中扮演著核心角色,並被證明能提升三維估算的效率和性能。另一方面,計算機視覺科學家在SfM中討論的一些最相關主題也在這一概率過濾方案下進行了探討;即投影模型、虛假拒絕、模型選擇和自我校準。