Foundations of Genetic Programming (Hardcover)
暫譯: 遺傳程式設計基礎 (精裝版)
William B. Langdon, Riccardo Poli
- 出版商: Demos Medical Publis
- 出版日期: 2002-02-14
- 售價: $1,050
- 貴賓價: 9.8 折 $1,029
- 語言: 英文
- 頁數: 260
- 裝訂: Hardcover
- ISBN: 3540424512
- ISBN-13: 9783540424512
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$680$537 -
$1,068Software Engineering, 6/e
-
$380$300 -
$350$298 -
$970Introduction to Algorithms, 2/e
-
$650$585 -
$580$458 -
$880$695 -
$860$568 -
$450$351 -
$780$741 -
$350$298 -
$750$638 -
$650$553 -
$760$600 -
$580$458 -
$590$466 -
$690$538 -
$780$616 -
$720$569 -
$560$442 -
$590$502 -
$560$476 -
$650$507 -
$380$300
相關主題
商品描述
Genetic programming (GP), one of the most advanced forms of evolutionary computation, has been highly successful as a technique for getting computers to automatically solve problems without having to tell them explicitly how. Since its inceptions more than ten years ago, GP has been used to solve practical problems in a variety of application fields. Along with this ad-hoc engineering approaches interest increased in how and why GP works. This book provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.
Contents
1. Introduction 2. Fitness Landscapes 3. Program Component Schema Theories 4. Pessimistic GP Schema Theories 5. Exact GP Schema Theorems 6. Lessons from the GP Schema Theory 7. The Genetic Programming Search Space 8. The GP Search Space: Theoretical Analysis 9. Example I: The Artificial Ant 10. Exemple II: The Max Problem 11. Genetic Programming Convergence and Bloat 12. Conclusions
商品描述(中文翻譯)
遺傳程式設計(Genetic Programming, GP)是進化計算中最先進的形式之一,作為一種技術,它在讓電腦自動解決問題方面取得了很大的成功,而無需明確告訴它們如何做。自十多年前首次提出以來,GP已被用於解決各種應用領域的實際問題。隨著這種臨時工程方法的興起,人們對GP的運作原理和原因的興趣也隨之增加。本書提供了對GP理論基礎的近期研究成果的連貫整合。簡明的GP和遺傳演算法(Genetic Algorithms, GA)介紹之後,討論了適應度景觀和其他自然與人工進化的理論方法。在回顧早期的GP理論方法後,本書提出了新的精確模式分析,顯示其適用於GP以及更簡單的GA。關於潛在無限數量的可能程式的新結果,隨後有兩章應用這些新技術。
**內容**
1. 介紹
2. 適應度景觀
3. 程式元件模式理論
4. 悲觀的GP模式理論
5. 精確的GP模式定理
6. 從GP模式理論中學到的教訓
7. 遺傳程式設計搜尋空間
8. GP搜尋空間:理論分析
9. 範例 I:人工蟻
10. 範例 II:最大化問題
11. 遺傳程式設計的收斂與膨脹
12. 結論