Micro Instrumentation: for High Throughput Experimentation and Process Intensification
暫譯: 微型儀器:高通量實驗與過程強化

Melvin V. Koch, Kurt M. VandenBussche, Ray W. Chrisman

  • 出版商: Wiley
  • 出版日期: 2007-04-09
  • 售價: $8,090
  • 貴賓價: 9.5$7,686
  • 語言: 英文
  • 頁數: 520
  • 裝訂: Hardcover
  • ISBN: 3527314253
  • ISBN-13: 9783527314256
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Description

This first comprehensive treatment of the intertwined roles of micro-instrumentation, high throughput experimentation and process intensification as valuable tools for process analytical technology covers both industrial as well as academic aspects. First class editors and authors from top companies and universities provide interdisciplinary coverage ranging from chemistry and analytics to process design and engineering, supported throughout by case studies and ample analytical data.

Table of Contents

Preface.

List of Contributors.

Part I Introducing the Concepts.

1 Introduction (Melvin V. Koch).

1.1 Background.

1.2 Analytical Tools for use in PAT.

1.3 The Center for Process Analytical Chemistry (CPAC) and the Summer Institute.

1.4 Topics covered by Previous CPAC Summer Institutes.

1.5 Recent Emphasis of CPAC Summer Institutes: High Throughput Experimentation and Process Intensification.

1.6 Conclusion.

2 Macro to Micro … The Evolution of Process Analytical Systems (Wayne W. Blaser and Ray W. Chrisman).

2.1 Introduction.

2.2 Chromatography.

3 Process Intensification (Kurt M. VandenBussche).

3.1 Introduction, Scope and Definitions.

3.2 Process Intensification in the Field of Reaction Engineering.

3.3 Process Intensification through Micro-structured Unit Operations.

3.4 Case Studies.

3.5 Conclusions.

4 High Throughput Research (Ray W. Chrisman).

4.1 Introduction.

4.2 Description of Terms.

4.3 Concept of a Research Process.

4.4 High Throughput Analytical.

4.5 Extracting Information from the Process.

4.6 Process Development becomes the Next Bottleneck.

4.7 Use of High Throughput Concepts for Process Development.

4.8 Microreactors for Process Development.

4.9 Current Barriers and Limitations to Microscale Reaction Characterization.

4.10 Conclusion.

Part II Technology Developments and Case Studies.

5 Introduction (Melvin V. Koch, Ray W. Chrisman, and Kurt M. VandenBussche).

6 Microreactor Concepts and Processing (Volker Hessel, Patrick Löb, Holger Löwe, and Gunther Kolb).

6.1 Introduction.

6.2 Microreactor Technology – Interfacing and Discipline Cross-boundary Research.

6.3 Microstructured Mixer-reactors for Pilot and Production Range and Scale-out Issues.

6.4 Fine-chemical Microreactor Plants.

6.5 Industrial Microreactor Process Development for Fine and Functional Chemistry.

6.6 Industrial Production in Fine Chemistry.

6.7 Microreactor Laboratory-scale Process Developments for Future Industrial Use.

6.8 Free-radical Polymerizations (Uni Strasbourg, IMM).

6.9 Future Directions – Establishing a Novel Chemistry by Enabling Function.

6.10 Summary.

7 Non-reactor Micro-component Development (Daniel R. Palo, Victoria S. Stenkamp, Jamie D. Holladay, Paul H. Humble, Robert A. Dagle, and Kriston P. Brooks).

7.1 Overview.

7.2 Introduction.

7.3 Heat Exchange.

7.4 Mixing.

7.5 Microchannel Emulsification.

7.6 Phase Separation.

7.7 Phase Transfer Processes.

7.8 Biological Processes.

7.9 Body Force Driven Processes.

7.10 Summary and Future Directions.

8 Microcomponent Flow Characterization (Bruce A. Finlayson, Pawel W. Drapala, Matt Gebhardt, Michael D. Harrison, Bryan Johnson, Marlina Lukman, Suwimol Kunaridtipol, Trevor Plaisted, Zachary Tyree, Jeremy VanBuren, and Albert Witarsa).

8.1 Introduction.

8.2 Pressure Drop.

8.3 Dimensionless Mechanical Energy Balance.

8.4 Entry Lengths.

8.5 Diffusion.

8.6 Conclusion.

Nomenclature.

9 Selected Developments in Micro-analytical Technology.

9.1 Introduction (Melvin V. Koch).

9.2 Application of On-line Raman Spectroscopy to Characterize and Optimize a Continuous Microreactor (Brian Marquardt).

9.3 Developments in Ultra Micro Gas Analyzers (Ulrich Bonne, Clark T. Nguyen, and Dennis E. Polla).

9.4 Nuclear Magnetic Resonance Spectroscopy (Michael McCarthy).

9.5 Surface Plasmon Resonance (SPR) Sensors (Clement E. Furlong, Timothy Chinowsky, and Scott Soelberg).

9.6 Dielectric Spectroscopy: Choosing the Right Approach (Alexander Mamishev).

9.7 The Future of Liquid-phase Microseparation Devices in Process Analytical Technology (Scott E. Gilbert).

9.8 Grating Light Re. ection Spectroscopy: A Tool for Monitoring the Properties of Heterogeneous Matrices (Lloyd W. Burgess).

10 New Platform for Sampling and Sensor Initiative (NeSSI) (David J. Veltkamp).

10.1 Introduction.

10.2 What is NeSSI?

10.3 NeSSI Background.

10.4 NeSSI Physical Layer (Generation I NeSSI).

10.5 NeSSI Electrical Layer (Generation II NeSSI).

10.6 Advantages of NeSSI in Laboratory Applications.

10.7 Conclusions.

11 Catalyst Characterization for Gas Phase Processes (Michelle J. Cohn and Douglas B. Galloway).

11.1 Introduction.

11.2 Characterizing Reactivity, Reaction Mechanisms, and Diffusion.

11.3 Summary.

12 Integrated Microreactor System for Gas Phase Reactions (David J. Quiram, Klavs F. Jensen, Martin A. Schmidt, Patrick L. Mills, James F. Ryley, Mark D. Wetzel, and Daniel J. Kraus).

12.1 Overview.

12.2 Introduction.

12.3 Microreactor Packaging.

12.4 Microreactor System Design.

12.5 System Control and Process Monitoring.

12.6 Microreactor Process Safety.

12.7 Microreactor Experimental Methods.

12.8 AIMS Testing Results and Discussion.

12.9 Summary and Conclusions.

13 Liquid Phase Process Characterization (Daniel A. Hickman and Daniel D. Sobeck).

13.1 Overview.

13.2 Background.

13.3 System Design Basis.

13.4 System Capabilities.

13.4.1 System Overview.

13.4.1.1 Feed System.

13.5 Conclusions.

Nomenclature.

References.

14 Novel Systems for New Chemistry Exploration (Paul Watts).

14.1 Introduction.

14.2 Chemical Synthesis in Microreactors.

14.2.1 Synthesis of Pyrazoles.

14.2.2 Peptide Synthesis.

14.2.3 Reaction Optimization.

14.2.4 Stereochemistry.

14.3 Chemical Synthesis in Flow Reactors.

14.3.1 Large-scale Manufacture.

14.4 Conclusions.

References.

15 Going from Laboratory to Pilot Plant to Production using Microreactors (Michael Grund, Michael Häberl, Dirk Schmalz, and Hanns Wurziger).

15.1 Introduction.

15.2 Nitration.

15.3 Microreaction System “MICROTAUROS.”

15.4 Automated Reaction Optimization.

15.5 Upscale in Larger Laboratory Scale.

15.6 Upscale in a Pilot Plant.

15.7 A Concept for the Future.

15.8 Conclusion.

References.

Part III A Summary and Path Forward.

16 Concluding Remarks (Melvin V. Koch, Ray W. Chrisman, and Kurt M. VandenBussche).

16.1 Summary.

16.2 The Path Forward.

Subject Index.

商品描述(中文翻譯)

描述

這本書首次全面探討微型儀器、高通量實驗和過程強化在過程分析技術中作為有價值工具的交織角色,涵蓋了工業和學術方面。來自頂尖公司和大學的一流編輯和作者提供了跨學科的內容,範圍從化學和分析到過程設計和工程,並通過案例研究和豐富的分析數據進行支持。

目錄

前言
貢獻者名單
第一部分 介紹概念
1 介紹(Melvin V. Koch)
1.1 背景
1.2 用於過程分析技術的分析工具
1.3 過程分析化學中心(CPAC)和夏季學院
1.4 先前CPAC夏季學院涵蓋的主題
1.5 CPAC夏季學院的近期重點:高通量實驗和過程強化
1.6 結論
2 從宏觀到微觀……過程分析系統的演變(Wayne W. Blaser 和 Ray W. Chrisman)
2.1 介紹
2.2 色譜法
3 過程強化(Kurt M. VandenBussche)
3.1 介紹、範圍和定義
3.2 反應工程領域的過程強化
3.3 通過微結構單元操作進行的過程強化
3.4 案例研究
3.5 結論
4 高通量研究(Ray W. Chrisman)
4.1 介紹
4.2 術語描述
4.3 研究過程的概念
4.4 高通量分析
4.5 從過程中提取信息
4.6 過程開發成為下一個瓶頸
4.7 用於過程開發的高通量概念
4.8 用於過程開發的微反應器
4.9 微尺度反應特徵化的當前障礙和限制
4.10 結論
第二部分 技術發展和案例研究
5 介紹(Melvin V. Koch, Ray W. Chrisman 和 Kurt M. VandenBussche)
6 微反應器概念和處理(Volker Hessel, Patrick Löb, Holger Löwe 和 Gunther Kolb)
6.1 介紹
6.2 微反應器技術——介面和跨學科研究
6.3 用於試點和生產範圍的微結構混合反應器及擴展問題
6.4 精細化學微反應器工廠
6.5 精細和功能化學的工業微反應器過程開發
6.6 精細化學的工業生產
6.7 未來工業使用的微反應器實驗室規模過程開發
6.8 自由基聚合(法國斯特拉斯堡大學,IMM)
6.9 未來方向——通過啟用功能建立新化學
6.10 總結
7 非反應器微組件開發(Daniel R. Palo, Victoria S. Stenkamp, Jamie D. Holladay, Paul H. Humble, Robert A. Dagle 和 Kriston P. Brooks)
7.1 概述
7.2 介紹
7.3 熱交換
7.4 混合
7.5 微通道乳化
7.6 相分離
7.7 相轉移過程
7.8 生物過程
7.9 由體力驅動的過程
7.10 總結和未來方向
8 微組件流動特徵化(Bruce A. Finlayson, Pawel W. Drapala, Matt Gebhardt, Michael D. Harrison, Bryan Johnson, Marlina Lukman, Suwimol Kunaridtipol, Trevor Plaisted, Zachary Tyree, Jeremy VanBuren 和 Albert Witarsa)
8.1 介紹
8.2 壓力降
8.3 無量綱機械能平衡
8.4 進入長度
8.5 擴散
8.6 結論
命名法
9 微分析技術的選定發展(Melvin V. Koch)
9.1 介紹
9.2 在線拉曼光譜法的應用以特徵化和優化連續微反應器(Brian Marquardt)
9.3 超微氣體分析儀的發展(Ulrich Bonne, Clark T. Nguyen 和 Dennis E. Polla)
9.4 核磁共振光譜法(Michael McCarthy)
9.5 表面等離子共振(SPR)傳感器(Clement E. Furlong, Timothy Chinowsky 和 Scott Soelberg)
9.6 介電光譜法:選擇正確的方法(Alexander Mamishev)
9.7 液相微分離設備在過程分析技術中的未來(Scott E. Gilbert)
9.8 光柵反射光譜法:監測異質基質性質的工具(Lloyd W. Burgess)
10 新的取樣和傳感器倡議平台(NeSSI)(David J. Veltkamp)
10.1 介紹
10.2 NeSSI是什麼?
10.3 NeSSI背景
10.4 NeSSI物理層(第一代NeSSI)
10.5 NeSSI電氣層(第二代NeSSI)
10.6 NeSSI在實驗室應用中的優勢
10.7 結論
11 氣相過程的催化劑特徵化(Michelle J. Cohn 和 Douglas B. Galloway)
11.1 介紹
11.2 反應性、反應機制和擴散的特徵化
11.3 總結
12 用於氣相反應的集成微反應器系統(David J. Quiram, Klavs F. Jensen, Martin A. Schmidt, Patrick L. Mills, James F. Ryley, Mark D. Wetzel 和 Daniel J. Kraus)
12.1 概述
12.2 介紹
12.3 微反應器包裝
12.4 微反應器系統設計
12.5 系統控制和過程監控
12.6 微反應器過程安全
12.7 微反應器實驗方法
12.8 AIMS測試結果和討論
12.9 總結和結論
13 液相過程特徵化(Daniel A. Hickman 和 Daniel D. Sobeck)
13.1 概述
13.2 背景
13.3 系統設計基礎
13.4 系統能力
13.4.1 系統概述
13.4.1.1 進料系統
13.5 結論
命名法
參考文獻
14 新化學探索的新系統(Paul Watts)
14.1 介紹
14.2 微反應器中的化學合成
14.2.1 吡唑的合成
14.2.2 肽的合成
14.2.3 反應優化
14.2.4 立體化學
14.3 流動反應器中的化學合成
14.3.1 大規模生產
14.4 結論
參考文獻
15 從實驗室到試點工廠再到生產使用微反應器(Michael Grund, Michael Häberl, Dirk Sch)