Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
暫譯: 不確定性量化與預測計算科學:物理科學家與工程師的基礎
Ryan G. McClarren
- 出版商: Springer
- 出版日期: 2018-12-05
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 345
- 裝訂: Hardcover
- ISBN: 3319995243
- ISBN-13: 9783319995243
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences.
Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment.
The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems.
Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.
商品描述(中文翻譯)
這本教科書教授理解和量化計算模擬中不確定性的基本背景和技能,以及在這些不確定性下預測系統行為的能力。它解決了在工程和物理科學中,模擬在高後果決策中廣泛應用所面臨的關鍵知識缺口。
本書從基本構建塊開始,構建複雜的預測技術,首先回顧了支撐後續主題的基本概念,包括概率、抽樣和貝葉斯統計。第二部分專注於應用局部靈敏度分析,將模型輸出中的不確定性分配到其輸入的不確定性來源。第三部分展示了量化參數不確定性對問題影響的技術,特別是輸入不確定性如何影響輸出。最後一部分涵蓋了應用不確定性量化技術以在不確定性下進行預測的方法,包括對認知不確定性的處理。它介紹了基於模擬、理論和實驗數據聚合來預測系統行為的理論和實踐。
文本專注於基於偏微分方程系統解的模擬,並深入涵蓋蒙地卡羅方法、計算實驗的基本設計以及正則化統計技術。文本中和在線上出現的 Python 代碼參考,使讀者能夠執行所討論的分析。來自現實模型問題的實例幫助讀者理解應用這些方法的機制。每章結尾都有幾個可分配的問題。
《不確定性量化與預測計算科學》滿足了對於工程和物理科學中高年級本科生及早期研究生的課堂教材日益增長的需求,並支持研究人員和專業人士的獨立學習,他們必須在開發和/或執行的模擬中納入不確定性量化和預測科學。