Clustering Methods for Big Data Analytics: Techniques, Toolboxes and Applications (Unsupervised and Semi-Supervised Learning)
暫譯: 大數據分析的聚類方法:技術、工具箱與應用(無監督與半監督學習)
- 出版商: Springer
- 出版日期: 2018-11-08
- 售價: $6,720
- 貴賓價: 9.5 折 $6,384
- 語言: 英文
- 頁數: 187
- 裝訂: Hardcover
- ISBN: 3319978632
- ISBN-13: 9783319978635
-
相關分類:
大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
商品描述(中文翻譯)
本書突顯了大數據聚類方法的最新技術及其在當代人工智慧驅動系統中的創新應用。書中的章節討論了用於聚類的深度學習、區塊鏈數據聚類、網絡安全應用(如內部威脅檢測)、可擴展的分佈式聚類方法以處理大量數據;聚類大數據流,例如由物聯網、數位健康和移動健康、人機互動及社交網絡的交匯所產生的數據流;基於 Spark 的大數據聚類,使用粒子群優化;以及用於網頁圖、感測器數據流和社交網絡的張量聚類。本書的章節均衡地涵蓋了大數據聚類的理論、方法、工具、框架、應用、表示、可視化及聚類驗證。