Visual Perception for Humanoid Robots: Environmental Recognition and Localization, from Sensor Signals to Reliable 6D Poses (Cognitive Systems Monographs)
David Israel González Aguirre
- 出版商: Springer
- 出版日期: 2018-09-11
- 售價: $4,410
- 貴賓價: 9.5 折 $4,190
- 語言: 英文
- 頁數: 220
- 裝訂: Hardcover
- ISBN: 331997839X
- ISBN-13: 9783319978390
-
相關分類:
感測器 Sensor、機器人製作 Robots
海外代購書籍(需單獨結帳)
相關主題
商品描述
• Active Sensing: Robust probabilistic methods for optimal, high dynamic range image acquisition are suitable for use with inexpensive cameras. This enables ideal sensing in arbitrary environmental conditions encountered in human-centric spaces. The book quantitatively shows the importance of equipping robots with dependable visual sensing.
• Feature Extraction & Recognition: Parameter-free, edge extraction methods based on structural graphs enable the representation of geometric primitives effectively and efficiently. This is done by eccentricity segmentation providing excellent recognition even on noisy & low-resolution images. Stereoscopic vision, Euclidean metric and graph-shape descriptors are shown to be powerful mechanisms for difficult recognition tasks.
• Global Self-Localization & Depth Uncertainty Learning: Simultaneous feature matching for global localization and 6D self-pose estimation are addressed by a novel geometric and probabilistic concept using intersection of Gaussian spheres. The path from intuition to the closed-form optimal solution determining the robot location is described, including a supervised learning method for uncertainty depth modeling based on extensive ground-truth training data from a motion capture system.
The methods and experiments are presented in self-contained chapters with comparisons and the state of the art. The algorithms were implemented and empirically evaluated on two humanoid robots: ARMAR III-A & B. The excellent robustness, performance and derived results received an award at the IEEE conference on humanoid robots and the contributions have been utilized for numerous visual manipulation tasks with demonstration at distinguished venues such as ICRA, CeBIT, IAS, and Automatica.
商品描述(中文翻譯)
本書提供了針對類人機器人的基於模型的環境視覺感知的概述。類人機器人的視覺感知建立了一座雙向橋樑,將感測器信號與環境物體的內部表徵連接起來。這類感知系統的目標是回答兩個基本問題:它是什麼?在哪裡?為了通過感測器到表徵的橋樑來回答這些問題,協調的過程被用來提取和利用與機器人心理表徵相匹配的物理實體的線索。這些過程包括感測器和執行器建模、校準、過濾和狀態估計的特徵提取。本書深入討論了以下主題:
• 主動感測:針對最佳、高動態範圍影像獲取的穩健概率方法適用於廉價相機。這使得在以人為中心的空間中遇到的任意環境條件下實現理想的感測。本書定量顯示了為機器人配備可靠視覺感測的重要性。
• 特徵提取與識別:基於結構圖的無參數邊緣提取方法能有效且高效地表示幾何原始圖形。這是通過偏心度分割來實現的,即使在噪聲和低解析度影像上也能提供出色的識別。立體視覺、歐幾里得度量和圖形形狀描述符被證明是解決困難識別任務的強大機制。
• 全球自我定位與深度不確定性學習:通過一種新穎的幾何和概率概念,使用高斯球體的交集來解決全球定位和6D自我姿態估計的同時特徵匹配。描述了從直覺到確定機器人位置的封閉形式最佳解的過程,包括基於運動捕捉系統的廣泛真實數據的深度不確定性建模的監督學習方法。
這些方法和實驗在獨立的章節中呈現,並進行了比較和現狀的討論。這些算法已在兩個類人機器人ARMAR III-A & B上實施並進行了實證評估。其卓越的穩健性、性能和衍生結果在IEEE類人機器人會議上獲得了獎項,並且這些貢獻已被用於多個視覺操作任務,並在ICRA、CeBIT、IAS和Automatica等著名場地進行了展示。