Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent (Human–Computer Interaction Series)
暫譯: 人類與機器學習:可見、可解釋、值得信賴與透明(人機互動系列)

  • 出版商: Springer
  • 出版日期: 2018-06-20
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 482
  • 裝訂: Hardcover
  • ISBN: 3319904027
  • ISBN-13: 9783319904023
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications.

This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making.

This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.


商品描述(中文翻譯)

隨著機器學習(Machine Learning, ML)演算法的進化、數據量的快速增加以及計算能力的顯著提升,機器學習在各種應用中變得越來越熱門。然而,由於ML方法的“黑箱”特性,機器學習仍然需要被解釋,以便將人類與機器學習聯繫起來,從而提高所提供解決方案的透明度和用戶接受度。本書從可視化、解釋、可信度和透明度的角度探討了這些聯繫。該書通過探索機器學習的透明性、ML過程的可視化解釋、ML模型的演算法解釋、人類在基於ML的決策中的認知反應、人類對機器學習的評估以及透明ML應用中的領域知識,建立了人類與機器學習之間的聯繫。

這是第一本系統性理解與人類和機器學習相關的當前活躍研究活動和成果的書籍。該書不僅將激勵研究人員熱情地開發新演算法,將人類納入以人為中心的ML演算法,從而促進ML的整體進步,還將幫助ML從業者主動使用ML輸出進行信息豐富且可信的決策。

本書旨在為從事機器學習及其應用的研究人員和從業者提供參考。該書將特別惠及人工智慧、決策支持系統和人機互動等領域的研究人員。

最後瀏覽商品 (1)