Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data
Hoogendoorn, Mark, Funk, Burkhardt
- 出版商: Springer
- 出版日期: 2018-08-15
- 售價: $7,050
- 貴賓價: 9.5 折 $6,698
- 語言: 英文
- 頁數: 231
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3319882155
- ISBN-13: 9783319882154
-
相關分類:
感測器 Sensor、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.